Huang Mingxia, Parker Mackenzie J, Stubbe JoAnne
From the Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado 80045 and.
the Departments of Chemistry and.
J Biol Chem. 2014 Oct 10;289(41):28104-11. doi: 10.1074/jbc.R114.596684. Epub 2014 Aug 26.
Over one-third of all proteins require metallation for function (Waldron, K. J., Rutherford, J. C., Ford, D., and Robinson, N.J. (2009) Nature 460, 823-830). As biochemical studies of most proteins depend on their isolation subsequent to recombinant expression (i.e. they are seldom purified from their host organism), there is no gold standard to assess faithful metallocofactor assembly and associated function. The biosynthetic machinery for metallocofactor formation in the recombinant expression system may be absent, inadequately expressed, or incompatible with a heterologously expressed protein. A combination of biochemical and genetic studies has led to the identification of key proteins involved in biosynthesis and likely repair of the metallocofactor of ribonucleotide reductases in both bacteria and the budding yeast. In this minireview, we will discuss the recent progress in understanding controlled delivery of metal, oxidants, and reducing equivalents for cofactor assembly in ribonucleotide reductases and highlight issues associated with controlling Fe/Mn metallation and avoidance of mismetallation.
超过三分之一的蛋白质需要金属化才能发挥功能(Waldron, K. J., Rutherford, J. C., Ford, D., and Robinson, N.J. (2009) Nature 460, 823 - 830)。由于大多数蛋白质的生化研究依赖于重组表达后的分离(即它们很少从宿主生物体中纯化得到),因此没有评估忠实金属辅因子组装及相关功能的金标准。重组表达系统中金属辅因子形成的生物合成机制可能缺失、表达不足或与异源表达的蛋白质不兼容。生化和遗传学研究相结合,已鉴定出细菌和芽殖酵母中参与核糖核苷酸还原酶金属辅因子生物合成及可能修复的关键蛋白质。在本综述中,我们将讨论在理解核糖核苷酸还原酶中金属、氧化剂和还原当量用于辅因子组装的受控递送方面的最新进展,并强调与控制铁/锰金属化及避免错配金属化相关的问题。