Life Sciences Institute and Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA.
ACS Chem Biol. 2012 Dec 21;7(12):1994-2003. doi: 10.1021/cb300385m. Epub 2012 Sep 26.
Sulfated molecules with diverse functions are common in biology, but sulfonation as a method to activate a metabolite for chemical catalysis is rare. Catalytic activity was characterized and crystal structures were determined for two such "activating" sulfotransferases (STs) that sulfonate β-hydroxyacyl thioester substrates. The CurM polyketide synthase (PKS) ST domain from the curacin A biosynthetic pathway of Moorea producens and the olefin synthase (OLS) ST from a hydrocarbon-producing system of Synechococcus PCC 7002 both occur as a unique acyl carrier protein (ACP), ST, and thioesterase (TE) tridomain within a larger polypeptide. During pathway termination, these cyanobacterial systems introduce a terminal double bond into the β-hydroxyacyl-ACP-linked substrate by the combined action of the ST and TE. Under in vitro conditions, CurM PKS ST and OLS ST acted on β-hydroxy fatty acyl-ACP substrates; however, OLS ST was not reactive toward analogues of the natural PKS ST substrate bearing a C5-methoxy substituent. The crystal structures of CurM ST and OLS ST revealed that they are members of a distinct protein family relative to other prokaryotic and eukaryotic sulfotransferases. A common binding site for the sulfonate donor 3'-phosphoadenosine-5'-phosphosulfate was visualized in complexes with the product 3'-phosphoadenosine-5'-phosphate. Critical functions for several conserved amino acids in the active site were confirmed by site-directed mutagenesis, including a proposed glutamate catalytic base. A dynamic active-site flap unique to the "activating" ST family affects substrate selectivity and product formation, based on the activities of chimeras of the PKS and OLS STs with exchanged active-site flaps.
具有多种功能的硫酸化分子在生物学中很常见,但磺化作为一种激活代谢物进行化学催化的方法却很少见。我们对两种这样的“激活”硫酸转移酶(ST)进行了催化活性的特征描述和晶体结构的测定,它们可以使β-羟基酰基硫酯底物磺化。来自 Moorea producens 中 curacin A 生物合成途径的 CurM 聚酮合酶(PKS)ST 结构域和来自产烃系统的烯烃合酶(OLS)ST 都存在于一个更大的多肽中,成为独特的酰基载体蛋白(ACP)、ST 和硫酯酶(TE)三联体。在途径终止时,这些蓝细菌系统通过 ST 和 TE 的联合作用,在β-羟基酰基-ACP 连接的底物中引入末端双键。在体外条件下,CurM PKS ST 和 OLS ST 作用于β-羟基脂肪酸酰基-ACP 底物;然而,OLS ST 对天然 PKS ST 底物的类似物没有反应,这些类似物带有 C5-甲氧基取代基。CurM ST 和 OLS ST 的晶体结构表明,它们相对于其他原核和真核硫酸转移酶,是一个独特的蛋白质家族的成员。在与产物 3'-磷酸腺苷-5'-磷酸(3'-磷酸腺苷-5'-磷酸)的复合物中,观察到了一个共同的硫酸供体 3'-磷酸腺苷-5'-磷酸硫酸盐结合位点。通过定点突变证实了几个保守氨基酸在活性位点中的关键功能,包括一个提议的谷氨酸催化碱。一个独特的“激活”ST 家族的动态活性位点瓣影响了底物选择性和产物形成,这是基于 PKS 和 OLS ST 之间具有交换活性位点瓣的嵌合体的活性。