Department of Polymer Science and Technology, Korea National University of Transportation, Chungju 380-702, Korea.
J Am Chem Soc. 2012 Oct 10;134(40):16500-3. doi: 10.1021/ja3073808. Epub 2012 Sep 27.
The ability of dip-pen nanolithography (DPN) to generate nano- or microarrays of soft or hard materials (e.g., small molecules, DNA, proteins, nanoparticles, sols, and polymers) in a direct-write manner has been widely demonstrated. The transporting of large-sized ink materials such as bacteria, however, remains a significant challenge with this technique. The size limitation of the water meniscus formed between the DPN tip and the solid surface becomes a bottleneck in such diffusion-based molecular transport experiments. Herein, we report a straightforward "stamp-on" DPN method that uses a nanostructured poly(2-methyl-2-oxazoline) hydrogel-coated tip and carrier agents to generate patterns of micrometer-sized Escherichia coli JM 109 bacterial cells. We demonstrate that this approach enables the deposition of a single bacterial cell array on a solid surface or arrays of layers of multiple cells by modulating the viscosity of the "ink" solution. Fluorescence microscopy images indicated that the deposited bacterial cells were kept alive on Luria-Bertani-agar layered solid surfaces after DPN patterning.
蘸笔纳米光刻(DPN)具有将软质或硬质材料(例如小分子、DNA、蛋白质、纳米粒子、溶胶和聚合物)以直接书写的方式生成纳米或微阵列的能力,这一特性已得到广泛证明。然而,用这种技术来传输大型油墨材料(例如细菌)仍然是一个重大挑战。在这种基于扩散的分子传输实验中,DPN 尖端和固体表面之间形成的水弯月面的尺寸限制成为了一个瓶颈。在此,我们报告了一种简单的“压印”DPN 方法,该方法使用纳米结构的聚(2-甲基-2-恶唑啉)水凝胶涂层尖端和载体试剂来生成微米级大肠杆菌 JM 109 细菌细胞的图案。我们证明,通过调节“油墨”溶液的粘度,可以在固体表面上沉积单个细菌细胞阵列或多层多个细胞的阵列。荧光显微镜图像表明,在 DPN 图案化后,沉积的细菌细胞在铺有 LB 琼脂的固体表面上保持存活。