Suppr超能文献

缺血性急性肾损伤的小鼠模型:技术说明和技巧。

Mouse model of ischemic acute kidney injury: technical notes and tricks.

机构信息

Dept. of Cellular Biology and Anatomy, Medical College of Georgia, Georgia Health Sciences Univ., Augusta, GA 30912, USA.

出版信息

Am J Physiol Renal Physiol. 2012 Dec 1;303(11):F1487-94. doi: 10.1152/ajprenal.00352.2012. Epub 2012 Sep 19.

Abstract

Renal ischemia-reperfusion leads to acute kidney injury (AKI), a major kidney disease associated with an increasing prevalence and high mortality rates. A variety of experimental models, both in vitro and in vivo, have been used to study the pathogenic mechanisms of ischemic AKI and to test renoprotective strategies. Among them, the mouse model of renal clamping is popular, mainly due to the availability of transgenic models and the relatively small animal size for drug testing. However, the mouse model is generally less stable, resulting in notable variations in results. Here, we describe a detailed protocol of the mouse model of bilateral renal ischemia-reperfusion. We share the lessons and experiences gained from our laboratory in the past decade. We further discuss the technical issues that account for the variability of this model and offer relevant solutions, which may help other investigators to establish a well-controlled, reliable animal model of ischemic AKI.

摘要

肾缺血再灌注导致急性肾损伤(AKI),这是一种主要的肾脏疾病,其患病率不断增加,死亡率也很高。为了研究缺血性 AKI 的发病机制并测试肾脏保护策略,已经使用了各种体外和体内的实验模型。其中,肾夹闭的小鼠模型较为流行,主要是因为其可获得转基因模型,且动物体型相对较小,适合进行药物测试。然而,小鼠模型通常不太稳定,导致结果存在明显差异。在这里,我们描述了一种详细的双侧肾缺血再灌注小鼠模型的方案。我们分享了过去十年中我们实验室获得的经验教训。我们进一步讨论了导致该模型变异性的技术问题,并提供了相关解决方案,这可能有助于其他研究人员建立一个可控性好、可靠的缺血性 AKI 动物模型。

相似文献

1
Mouse model of ischemic acute kidney injury: technical notes and tricks.
Am J Physiol Renal Physiol. 2012 Dec 1;303(11):F1487-94. doi: 10.1152/ajprenal.00352.2012. Epub 2012 Sep 19.
2
Mouse models and methods for studying human disease, acute kidney injury (AKI).
Methods Mol Biol. 2014;1194:421-36. doi: 10.1007/978-1-4939-1215-5_24.
3
Comparison of ischemic and ischemic/reperfused kidney injury via clamping renal artery, vein, or pedicle in anesthetized rats.
Int Urol Nephrol. 2020 Dec;52(12):2415-2428. doi: 10.1007/s11255-020-02611-x. Epub 2020 Aug 31.
4
Erythropoietin modulates macrophages but not post-ischemic acute kidney injury in mice.
J Formos Med Assoc. 2019 Jan;118(1 Pt 3):494-503. doi: 10.1016/j.jfma.2018.10.015. Epub 2018 Nov 7.
7
Unilateral Renal Ischemia-Reperfusion as a Robust Model for Acute to Chronic Kidney Injury in Mice.
PLoS One. 2016 Mar 23;11(3):e0152153. doi: 10.1371/journal.pone.0152153. eCollection 2016.
8
Role of intratubular pressure during the ischemic phase in acute kidney injury.
Am J Physiol Renal Physiol. 2017 Jun 1;312(6):F1158-F1165. doi: 10.1152/ajprenal.00527.2016. Epub 2016 Nov 9.
9
A new mouse model of hemorrhagic shock-induced acute kidney injury.
Am J Physiol Renal Physiol. 2017 Jan 1;312(1):F134-F142. doi: 10.1152/ajprenal.00347.2016. Epub 2016 Nov 9.
10
Inhibition of Estrogen Sulfotransferase (/EST) Ameliorates Ischemic Acute Kidney Injury in Mice.
J Am Soc Nephrol. 2020 Jul;31(7):1496-1508. doi: 10.1681/ASN.2019080767. Epub 2020 May 18.

引用本文的文献

1
Asprosin protects against ischemia/reperfusion-induced kidney injury in mice.
J Mol Histol. 2025 Aug 12;56(5):265. doi: 10.1007/s10735-025-10555-8.
2
Time of Day-Dependent Responses to Cisplatin Treatment in a Male Mouse Model of Hepatoma.
J Biol Rhythms. 2025 Jul 24:7487304251349893. doi: 10.1177/07487304251349893.
5
mTOR promotes the formation and growth of tertiary lymphoid tissues in the kidney.
Front Immunol. 2025 May 27;16:1527817. doi: 10.3389/fimmu.2025.1527817. eCollection 2025.
8
9
mRNA lipid nanoparticle formulation, characterization and evaluation.
Nat Protoc. 2025 Mar 11. doi: 10.1038/s41596-024-01134-4.
10
Kidney Fibrosis In Vitro and In Vivo Models: Path Toward Physiologically Relevant Humanized Models.
Adv Healthc Mater. 2025 Apr;14(9):e2403230. doi: 10.1002/adhm.202403230. Epub 2025 Feb 5.

本文引用的文献

1
Interleukin-11 protects against renal ischemia and reperfusion injury.
Am J Physiol Renal Physiol. 2012 Oct 15;303(8):F1216-24. doi: 10.1152/ajprenal.00220.2012. Epub 2012 Aug 1.
2
Autophagy in proximal tubules protects against acute kidney injury.
Kidney Int. 2012 Dec;82(12):1271-83. doi: 10.1038/ki.2012.261. Epub 2012 Aug 1.
3
ET-1 deletion from endothelial cells protects the kidney during the extension phase of ischemia/reperfusion injury.
Biochem Biophys Res Commun. 2012 Aug 24;425(2):443-9. doi: 10.1016/j.bbrc.2012.07.121. Epub 2012 Jul 27.
4
Cellular senescence limits regenerative capacity and allograft survival.
J Am Soc Nephrol. 2012 Sep;23(9):1467-73. doi: 10.1681/ASN.2011100967. Epub 2012 Jul 12.
5
C3a and C5a promote renal ischemia-reperfusion injury.
J Am Soc Nephrol. 2012 Sep;23(9):1474-85. doi: 10.1681/ASN.2011111072. Epub 2012 Jul 12.
6
Delayed ischemic preconditioning contributes to renal protection by upregulation of miR-21.
Kidney Int. 2012 Dec;82(11):1167-75. doi: 10.1038/ki.2012.241. Epub 2012 Jul 11.
7
Lung endothelial cell apoptosis during ischemic acute kidney injury.
Shock. 2012 Aug;38(3):320-7. doi: 10.1097/SHK.0b013e31826359d0.
8
Complement activation and toll-like receptor-2 signaling contribute to cytokine production after renal ischemia/reperfusion.
Mol Immunol. 2012 Oct;52(3-4):249-57. doi: 10.1016/j.molimm.2012.05.020. Epub 2012 Jun 27.
9
Overexpression of stanniocalcin-1 inhibits reactive oxygen species and renal ischemia/reperfusion injury in mice.
Kidney Int. 2012 Oct;82(8):867-77. doi: 10.1038/ki.2012.223. Epub 2012 Jun 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验