Suppr超能文献

固定蜂鸟翼上方过渡流场分析。

Analysis of the transitional flow field over a fixed hummingbird wing.

机构信息

University of Cambridge, Department of Zoology, Downing Street, Cambridge CB2 3EJ, UK.

出版信息

J Exp Biol. 2013 Jan 15;216(Pt 2):303-18. doi: 10.1242/jeb.075341. Epub 2012 Sep 20.

Abstract

We analyzed the flow fields characterized by chord-based Reynolds numbers of 5000 to 15,000 over a stationary model of a hummingbird (Calypte anna) wing. Utilizing two experimental techniques, constant-temperature anemometry and stereo particle image velocimetry, the high-fidelity results depict a laminar-to-turbulent transition process that develops over the wing. At both zero and non-zero angles of attack the spectrum of the velocity signals is wide. At non-zero angles of attack the flow separates from the wing surface and a shear layer forms. As a result, unsteady flow disturbances amplify at a chord-based Reynolds numbers as low as 5000. Nevertheless, only at a Reynolds number of 15,000 is the flow disturbance growth rate sufficient to bring enough momentum from the outer region of the boundary layer to reattach the flow to the wing surface. For a Reynolds number of 5000, a comparison between the observed growth rates and a theoretical approximation concludes that flow disturbances of a Strouhal number of unity (and above) are no longer two-dimensional. In view of these conclusions, this study could serve as the first step towards a better understanding of the flow mechanisms over steady revolving and periodically flapping wings at this Reynolds number regime.

摘要

我们分析了基于弦雷诺数为 5000 至 15000 的定常蜂鸟(Calypte anna)翼模型的流场。利用两种实验技术,恒温风速计和立体粒子图像测速仪,高保真结果描绘了翼上的层流到湍流的过渡过程。在零攻角和非零攻角下,速度信号的频谱都很宽。在非零攻角下,流从机翼表面分离并形成剪切层。结果,在基于弦的雷诺数低至 5000 时,非定常流干扰就会放大。然而,只有在雷诺数为 15000 时,流干扰的增长率才足以将足够的动量从边界层的外部区域传递到翼表面,使流重新附着。对于雷诺数为 5000,观察到的增长率与理论近似值之间的比较得出结论,斯特劳哈尔数为 1(及以上)的流干扰不再是二维的。鉴于这些结论,本研究可以作为理解该雷诺数范围内定常旋转和周期性拍打翼流动机理的第一步。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验