Suppr超能文献

相似文献

1
Toward design of an environment-aware adaptive locomotion-mode-recognition system.
IEEE Trans Biomed Eng. 2012 Oct;59(10):2716-25. doi: 10.1109/TBME.2012.2208641.
2
Continuous locomotion-mode identification for prosthetic legs based on neuromuscular-mechanical fusion.
IEEE Trans Biomed Eng. 2011 Oct;58(10):2867-75. doi: 10.1109/TBME.2011.2161671. Epub 2011 Jul 14.
3
Development of an Environment-Aware Locomotion Mode Recognition System for Powered Lower Limb Prostheses.
IEEE Trans Neural Syst Rehabil Eng. 2016 Apr;24(4):434-43. doi: 10.1109/TNSRE.2015.2420539. Epub 2015 Apr 14.
4
Investigation of Timing to Switch Control Mode in Powered Knee Prostheses during Task Transitions.
PLoS One. 2015 Jul 21;10(7):e0133965. doi: 10.1371/journal.pone.0133965. eCollection 2015.
5
Improving the performance of a neural-machine interface for artificial legs using prior knowledge of walking environment.
Annu Int Conf IEEE Eng Med Biol Soc. 2011;2011:4255-8. doi: 10.1109/IEMBS.2011.6091056.
6
Analysis of using EMG and mechanical sensors to enhance intent recognition in powered lower limb prostheses.
J Neural Eng. 2014 Oct;11(5):056021. doi: 10.1088/1741-2560/11/5/056021. Epub 2014 Sep 22.
7
Source selection for real-time user intent recognition toward volitional control of artificial legs.
IEEE J Biomed Health Inform. 2013 Sep;17(5):907-14. doi: 10.1109/JBHI.2012.2236563.
8
Real-time implementation of an intent recognition system for artificial legs.
Annu Int Conf IEEE Eng Med Biol Soc. 2011;2011:2997-3000. doi: 10.1109/IEMBS.2011.6090822.
9
A Classification Method for User-Independent Intent Recognition for Transfemoral Amputees Using Powered Lower Limb Prostheses.
IEEE Trans Neural Syst Rehabil Eng. 2016 Feb;24(2):217-25. doi: 10.1109/TNSRE.2015.2412461. Epub 2015 Mar 16.
10
Preliminary study of the effect of user intent recognition errors on volitional control of powered lower limb prostheses.
Annu Int Conf IEEE Eng Med Biol Soc. 2012;2012:2768-71. doi: 10.1109/EMBC.2012.6346538.

引用本文的文献

1
Review on Portable-Powered Lower Limb Exoskeletons.
Sensors (Basel). 2024 Dec 18;24(24):8090. doi: 10.3390/s24248090.
3
5
EMG-driven control in lower limb prostheses: a topic-based systematic review.
J Neuroeng Rehabil. 2022 May 7;19(1):43. doi: 10.1186/s12984-022-01019-1.
6
Environment Classification for Robotic Leg Prostheses and Exoskeletons Using Deep Convolutional Neural Networks.
Front Neurorobot. 2022 Feb 4;15:730965. doi: 10.3389/fnbot.2021.730965. eCollection 2021.
8
Review of control strategies for lower-limb exoskeletons to assist gait.
J Neuroeng Rehabil. 2021 Jul 27;18(1):119. doi: 10.1186/s12984-021-00906-3.
9
ExoNet Database: Wearable Camera Images of Human Locomotion Environments.
Front Robot AI. 2020 Dec 3;7:562061. doi: 10.3389/frobt.2020.562061. eCollection 2020.

本文引用的文献

1
Preliminary study of the effect of user intent recognition errors on volitional control of powered lower limb prostheses.
Annu Int Conf IEEE Eng Med Biol Soc. 2012;2012:2768-71. doi: 10.1109/EMBC.2012.6346538.
2
Preliminary design of a terrain recognition system.
Annu Int Conf IEEE Eng Med Biol Soc. 2011;2011:5452-5. doi: 10.1109/IEMBS.2011.6091391.
3
Preliminary evaluation of a powered lower limb orthosis to aid walking in paraplegic individuals.
IEEE Trans Neural Syst Rehabil Eng. 2011 Dec;19(6):652-9. doi: 10.1109/TNSRE.2011.2163083. Epub 2011 Oct 3.
4
Continuous locomotion-mode identification for prosthetic legs based on neuromuscular-mechanical fusion.
IEEE Trans Biomed Eng. 2011 Oct;58(10):2867-75. doi: 10.1109/TBME.2011.2161671. Epub 2011 Jul 14.
5
Real-time myoelectric control of knee and ankle motions for transfemoral amputees.
JAMA. 2011 Apr 20;305(15):1542-4. doi: 10.1001/jama.2011.465.
6
Volitional control of a prosthetic knee using surface electromyography.
IEEE Trans Biomed Eng. 2011 Jan;58(1):144-51. doi: 10.1109/TBME.2010.2070840. Epub 2010 Aug 30.
7
Preliminary Evaluations of a Self-Contained Anthropomorphic Transfemoral Prosthesis.
IEEE ASME Trans Mechatron. 2009;14(6):667-676. doi: 10.1109/TMECH.2009.2032688.
8
Multiclass real-time intent recognition of a powered lower limb prosthesis.
IEEE Trans Biomed Eng. 2010 Mar;57(3):542-51. doi: 10.1109/TBME.2009.2034734. Epub 2009 Oct 20.
10
A strategy for identifying locomotion modes using surface electromyography.
IEEE Trans Biomed Eng. 2009 Jan;56(1):65-73. doi: 10.1109/TBME.2008.2003293.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验