Suppr超能文献

相似文献

1
Continuous locomotion-mode identification for prosthetic legs based on neuromuscular-mechanical fusion.
IEEE Trans Biomed Eng. 2011 Oct;58(10):2867-75. doi: 10.1109/TBME.2011.2161671. Epub 2011 Jul 14.
2
Real-time implementation of an intent recognition system for artificial legs.
Annu Int Conf IEEE Eng Med Biol Soc. 2011;2011:2997-3000. doi: 10.1109/IEMBS.2011.6090822.
3
Source selection for real-time user intent recognition toward volitional control of artificial legs.
IEEE J Biomed Health Inform. 2013 Sep;17(5):907-14. doi: 10.1109/JBHI.2012.2236563.
4
Toward design of an environment-aware adaptive locomotion-mode-recognition system.
IEEE Trans Biomed Eng. 2012 Oct;59(10):2716-25. doi: 10.1109/TBME.2012.2208641.
5
Analysis of using EMG and mechanical sensors to enhance intent recognition in powered lower limb prostheses.
J Neural Eng. 2014 Oct;11(5):056021. doi: 10.1088/1741-2560/11/5/056021. Epub 2014 Sep 22.
6
Improving the performance of a neural-machine interface for artificial legs using prior knowledge of walking environment.
Annu Int Conf IEEE Eng Med Biol Soc. 2011;2011:4255-8. doi: 10.1109/IEMBS.2011.6091056.
7
A Method for Locomotion Mode Identification Using Muscle Synergies.
IEEE Trans Neural Syst Rehabil Eng. 2017 Jun;25(6):608-617. doi: 10.1109/TNSRE.2016.2585962. Epub 2016 Jun 28.
8
Improving the performance of a neural-machine interface for prosthetic legs using adaptive pattern classifiers.
Annu Int Conf IEEE Eng Med Biol Soc. 2013;2013:1571-4. doi: 10.1109/EMBC.2013.6609814.
9
A locomotion intent prediction system based on multi-sensor fusion.
Sensors (Basel). 2014 Jul 10;14(7):12349-69. doi: 10.3390/s140712349.

引用本文的文献

1
Enhancing Robot Transparency in Human-Robot Prosthesis Interaction to Mitigate Terrain Misrecognition Error.
IEEE Trans Med Robot Bionics. 2025 May;7(2):734-742. doi: 10.1109/tmrb.2025.3552924. Epub 2025 Mar 19.
2
Exploratory development of human-machine interaction strategies for post-stroke upper-limb rehabilitation.
J Neuroeng Rehabil. 2025 Jul 4;22(1):144. doi: 10.1186/s12984-025-01680-2.
3
Evaluation of a Portable Bionic Ankle Prosthesis Under Direct Continuous Electromyography Control for Quiet Standing Tasks.
J Prosthet Orthot. 2025 Jul;37(3):153-163. doi: 10.1097/JPO.0000000000000533. Epub 2024 Aug 26.
4
Real-time locomotion mode detection in individuals with transfemoral amputation and osseointegration.
J Neuroeng Rehabil. 2025 Jun 24;22(1):142. doi: 10.1186/s12984-025-01672-2.
5
Mode-Unified Intent Estimation of a Robotic Prosthesis using Deep-Learning.
IEEE Robot Autom Lett. 2025 Apr;10(4):3206-3213. doi: 10.1109/lra.2025.3535186. Epub 2025 Jan 27.
8
Transfer Learning for Efficient Intent Prediction in Lower-Limb Prosthetics: A Strategy for Limited Datasets.
IEEE Robot Autom Lett. 2024 May;9(5):4321-4328. doi: 10.1109/lra.2024.3379800. Epub 2024 Mar 20.
9
Continuous neural control of a bionic limb restores biomimetic gait after amputation.
Nat Med. 2024 Jul;30(7):2010-2019. doi: 10.1038/s41591-024-02994-9. Epub 2024 Jul 1.

本文引用的文献

1
An electrohydraulic knee-torque controller for a prosthesis simulator.
J Biomech Eng. 1977 Feb 1;99(1):3-8. doi: 10.1115/1.3426266. Epub 2010 Oct 21.
2
Design and Control of a Powered Transfemoral Prosthesis.
Int J Rob Res. 2008 Feb 1;27(2):263-273. doi: 10.1177/0278364907084588.
3
Multiclass real-time intent recognition of a powered lower limb prosthesis.
IEEE Trans Biomed Eng. 2010 Mar;57(3):542-51. doi: 10.1109/TBME.2009.2034734. Epub 2009 Oct 20.
5
A strategy for identifying locomotion modes using surface electromyography.
IEEE Trans Biomed Eng. 2009 Jan;56(1):65-73. doi: 10.1109/TBME.2008.2003293.
6
Support vector machine-based classification scheme for myoelectric control applied to upper limb.
IEEE Trans Biomed Eng. 2008 Aug;55(8):1956-65. doi: 10.1109/TBME.2008.919734.
7
Powered ankle-foot prosthesis to assist level-ground and stair-descent gaits.
Neural Netw. 2008 May;21(4):654-66. doi: 10.1016/j.neunet.2008.03.006. Epub 2008 Apr 26.
8
An analysis of EMG electrode configuration for targeted muscle reinnervation based neural machine interface.
IEEE Trans Neural Syst Rehabil Eng. 2008 Feb;16(1):37-45. doi: 10.1109/TNSRE.2007.910282.
9
A comparison of surface and intramuscular myoelectric signal classification.
IEEE Trans Biomed Eng. 2007 May;54(5):847-53. doi: 10.1109/TBME.2006.889192.
10
Recent developments in biofeedback for neuromotor rehabilitation.
J Neuroeng Rehabil. 2006 Jun 21;3:11. doi: 10.1186/1743-0003-3-11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验