Suppr超能文献

花粉囊开裂的生物力学模型揭示了脱水和次生加厚的作用。

A biomechanical model of anther opening reveals the roles of dehydration and secondary thickening.

机构信息

School of Mathematical Sciences, University of Nottingham, Nottingham, NG7 2RD, UK.

Centre for Plant Integrative Biology, School of Biosciences, University of Nottingham, Sutton Bonington, Nottingham, LE12 5RD, UK.

出版信息

New Phytol. 2012 Dec;196(4):1030-1037. doi: 10.1111/j.1469-8137.2012.04329.x. Epub 2012 Sep 21.

Abstract

Understanding the processes that underlie pollen release is a prime target for controlling fertility to enable selective breeding and the efficient production of hybrid crops. Pollen release requires anther opening, which involves changes in the biomechanical properties of the anther wall. In this research, we develop and use a mathematical model to understand how these biomechanical processes lead to anther opening. Our mathematical model describing the biomechanics of anther opening incorporates the bilayer structure of the mature anther wall, which comprises the outer epidermal cell layer, whose turgor pressure is related to its hydration, and the endothecial layer, whose walls contain helical secondary thickening, which resists stretching and bending. The model describes how epidermal dehydration, in association with the thickened endothecial layer, creates forces within the anther wall causing it to bend outwards, resulting in anther opening and pollen release. The model demonstrates that epidermal dehydration can drive anther opening, and suggests why endothecial secondary thickening is essential for this process (explaining the phenotypes presented in the myb26 and nst1nst2 mutants). The research hypothesizes and demonstrates a biomechanical mechanism for anther opening, which appears to be conserved in many other biological situations where tissue movement occurs.

摘要

理解花粉释放的过程是控制生育能力的主要目标,这可以实现有选择的繁殖和杂交作物的高效生产。花粉释放需要花药开裂,这涉及到花药壁生物力学特性的变化。在这项研究中,我们开发并使用了一个数学模型来理解这些生物力学过程如何导致花药开裂。我们描述花药开裂生物力学的数学模型结合了成熟花药壁的双层结构,包括外层表皮细胞层,其膨压与其水合作用有关,以及内层,其细胞壁含有螺旋状次生加厚,这抵抗拉伸和弯曲。该模型描述了表皮脱水如何与增厚的内层一起在花药壁内产生力,导致其向外弯曲,从而导致花药开裂和花粉释放。该模型表明,表皮脱水可以驱动花药开裂,并解释了为什么内皮细胞次生加厚对于这个过程是必不可少的(解释了 myb26 和 nst1nst2 突变体中呈现的表型)。该研究假设并证明了花药开裂的生物力学机制,这似乎在许多其他发生组织运动的生物学情况下都是保守的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a1ba/3569878/8f80da963cff/nph0196-1030-fig0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验