Suppr超能文献

在微流控流动分析中对剪切依赖性血小板功能进行高通量评估。

High content evaluation of shear dependent platelet function in a microfluidic flow assay.

机构信息

Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, CO 80401, USA.

出版信息

Ann Biomed Eng. 2013 Feb;41(2):250-62. doi: 10.1007/s10439-012-0658-5. Epub 2012 Sep 22.

Abstract

The high blood volume requirements and low throughput of conventional flow assays for measuring platelet function are unsuitable for drug screening and clinical applications. In this study, we describe a microfluidic flow assay that uses 50 μL of whole blood to measure platelet function on ~300 micropatterned spots of collagen over a range of physiologic shear rates (50-920 s(-1)). Patterning of collagen thin films (CTF) was achieved using a novel hydrated microcontact stamping method. CTF spots of 20, 50, and 100 μm were defined on glass substrates and consisted of a dense mat of nanoscale collagen fibers (3.74 ± 0.75 nm). We found that a spot size of greater than 20 μm was necessary to support platelet adhesion under flow, suggesting a threshold injury size is necessary for stable platelet adhesion. Integrating 50 μm CTF microspots into a multishear microfluidic device yielded a high content assay from which we extracted platelet accumulation metrics (lag time, growth rate, total accumulation) on the spots using Hoffman modulation contrast microscopy. This method has potential broad application in identifying platelet function defects and screening, monitoring, and dosing antiplatelet agents.

摘要

传统的流式检测方法在测量血小板功能时需要高血容量且通量低,不适合药物筛选和临床应用。在这项研究中,我们描述了一种使用 50 μL 全血在生理剪切速率范围内(50-920 s-1)在约 300 个胶原微图案点上测量血小板功能的微流控流动检测方法。使用新型水合微接触冲压方法实现了胶原薄膜(CTF)的图案化。在玻璃基底上定义了 20、50 和 100 μm 的 CTF 点,其由纳米级胶原纤维的密集垫组成(3.74±0.75 nm)。我们发现,大于 20 μm 的斑点大小对于在流动下支持血小板黏附是必要的,这表明稳定的血小板黏附需要一个临界损伤大小。将 50 μm 的 CTF 微点集成到多剪切微流控装置中,可从其中提取血小板聚集指标(迟滞时间、增长率、总聚集),使用 Hoffman 调制对比显微镜在斑点上进行检测。这种方法具有识别血小板功能缺陷以及筛选、监测和调整抗血小板药物的潜在广泛应用。

相似文献

1
High content evaluation of shear dependent platelet function in a microfluidic flow assay.
Ann Biomed Eng. 2013 Feb;41(2):250-62. doi: 10.1007/s10439-012-0658-5. Epub 2012 Sep 22.
3
Platelet adhesion and aggregation under flow using microfluidic flow cells.
J Vis Exp. 2009 Oct 27(32):1644. doi: 10.3791/1644.
4
Sources of variability in platelet accumulation on type 1 fibrillar collagen in microfluidic flow assays.
PLoS One. 2013;8(1):e54680. doi: 10.1371/journal.pone.0054680. Epub 2013 Jan 23.
5
Microfluidic devices for studies of shear-dependent platelet adhesion.
Lab Chip. 2008 Sep;8(9):1486-95. doi: 10.1039/b804795b. Epub 2008 Jul 23.
6
Design considerations for a microfluidic device to quantify the platelet adhesion to collagen at physiological shear rates.
Ann Biomed Eng. 2009 Jul;37(7):1331-41. doi: 10.1007/s10439-009-9708-z. Epub 2009 May 8.
9
Direct observation of von Willebrand factor elongation and fiber formation on collagen during acute whole blood exposure to pathological flow.
Arterioscler Thromb Vasc Biol. 2013 Jan;33(1):105-13. doi: 10.1161/ATVBAHA.112.300522. Epub 2012 Oct 25.

引用本文的文献

1
iMer, a naturally occurring MERTK splice variant, binds to GAS6 to decrease platelet activation and thrombus formation.
Blood Vessel Thromb Hemost. 2025 May 26;2(3):100078. doi: 10.1016/j.bvth.2025.100078. eCollection 2025 Aug.
4
Microfluidic models of the human circulatory system: versatile platforms for exploring mechanobiology and disease modeling.
Biophys Rev. 2021 Jul 14;13(5):769-786. doi: 10.1007/s12551-021-00815-8. eCollection 2021 Oct.
5
The Art and Science of Building a Computational Model to Understand Hemostasis.
Semin Thromb Hemost. 2021 Mar;47(2):129-138. doi: 10.1055/s-0041-1722861. Epub 2021 Feb 26.
10
Evaluation of a microfluidic flow assay to screen for von Willebrand disease and low von Willebrand factor levels.
J Thromb Haemost. 2018 Jan;16(1):104-115. doi: 10.1111/jth.13881. Epub 2017 Nov 23.

本文引用的文献

2
Characterization of collagen thin films for von Willebrand factor binding and platelet adhesion.
Langmuir. 2011 Nov 15;27(22):13648-58. doi: 10.1021/la2023727. Epub 2011 Oct 19.
3
High-content screening in microfluidic devices.
Expert Opin Drug Discov. 2010 Aug;5(8):715-20. doi: 10.1517/17460441.2010.495116.
4
Microfluidic devices for modeling cell-cell and particle-cell interactions in the microvasculature.
Microvasc Res. 2011 Nov;82(3):210-20. doi: 10.1016/j.mvr.2011.06.013. Epub 2011 Jul 2.
5
Well plate microfluidic system for investigation of dynamic platelet behavior under variable shear loads.
Biotechnol Bioeng. 2011 Dec;108(12):2978-87. doi: 10.1002/bit.23243. Epub 2011 Jul 16.
6
The prostaglandin E2 receptor EP4 is expressed by human platelets and potently inhibits platelet aggregation and thrombus formation.
Arterioscler Thromb Vasc Biol. 2010 Dec;30(12):2416-23. doi: 10.1161/ATVBAHA.110.216374. Epub 2010 Nov 11.
7
The beautiful cell: high-content screening in drug discovery.
Anal Bioanal Chem. 2010 Sep;398(1):219-26. doi: 10.1007/s00216-010-3788-3. Epub 2010 Jun 25.
9
Modulation contrast microscope.
Appl Opt. 1975 May 1;14(5):1169-76. doi: 10.1364/AO.14.001169.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验