Baker IDI Heart and Diabetes Institute, St Kilda Rd Central, Melbourne, VIC 8008, Australia.
Diabetologia. 2012 Dec;55(12):3369-81. doi: 10.1007/s00125-012-2720-0. Epub 2012 Sep 22.
AIMS/HYPOTHESIS: Diabetic cardiomyopathy is characterised by diastolic dysfunction, oxidative stress, fibrosis, apoptosis and pathological cardiomyocyte hypertrophy. Phosphoinositide 3-kinase (PI3K)(p110α) is a cardioprotective kinase, but its role in the diabetic heart is unknown. The aim of this study was to assess whether PI3K(p110α) plays a critical role in the induction of diabetic cardiomyopathy, and whether increasing PI3K(p110α) activity in the heart can prevent the development of cardiac dysfunction in a setting of diabetes.
Type 1 diabetes was induced with streptozotocin in adult male cardiac-specific transgenic mice with increased PI3K(p110α) activity (constitutively active PI3K [p110α], caPI3K] or decreased PI3K(p110α) activity (dominant-negative PI3K [p110α], dnPI3K) and non-transgenic (Ntg) mice for 12 weeks. Cardiac function, histological and molecular analyses were performed.
Diabetic Ntg mice displayed diastolic dysfunction and increased cardiomyocyte size, expression of atrial and B-type natriuretic peptides (Anp, Bnp), fibrosis and apoptosis, as well as increased superoxide generation and increased protein kinase C β2 (PKCβ2), p22 ( phox ) and apoptosis signal-regulating kinase 1 (Ask1) expression. Diabetic dnPI3K mice displayed an exaggerated cardiomyopathy phenotype compared with diabetic Ntg mice. In contrast, diabetic caPI3K mice were protected against diastolic dysfunction, pathological cardiomyocyte hypertrophy, fibrosis and apoptosis. Protection in diabetic caPI3K mice was associated with attenuation of left ventricular superoxide generation, attenuated Anp, Bnp, PKCβ2, Ask1 and p22 ( phox ) expression, and elevated AKT. Further, in cardiomyocyte-like cells, increased PI3K(p110α) activity suppressed high glucose-induced superoxide generation and enhanced mitochondrial function.
CONCLUSIONS/INTERPRETATION: These results demonstrate that reduced PI3K activity accelerates the development of diabetic cardiomyopathy, and that enhanced PI3K(p110α) activity can prevent adverse cardiac remodelling and dysfunction in a setting of diabetes.
目的/假设:糖尿病心肌病的特征是舒张功能障碍、氧化应激、纤维化、细胞凋亡和病理性心肌细胞肥大。磷酸肌醇 3-激酶(PI3K)(p110α)是一种心脏保护性激酶,但它在糖尿病心脏中的作用尚不清楚。本研究旨在评估 PI3K(p110α)是否在诱导糖尿病心肌病中起关键作用,以及在糖尿病环境中增加心脏中的 PI3K(p110α)活性是否可以预防心脏功能障碍的发展。
在成年雄性心脏特异性过表达 PI3K(p110α)活性(组成性激活 PI3K[p110α],caPI3K)或降低 PI3K(p110α)活性(显性负性 PI3K[p110α],dnPI3K)的转基因小鼠和非转基因(Ntg)小鼠中诱导 1 型糖尿病 12 周。进行心脏功能、组织学和分子分析。
糖尿病 Ntg 小鼠表现出舒张功能障碍和心肌细胞增大,心房利钠肽(Anp)和 B 型利钠肽(Bnp)、纤维化和细胞凋亡表达增加,以及超氧化物生成增加和蛋白激酶 Cβ2(PKCβ2)、p22(phox)和凋亡信号调节激酶 1(Ask1)表达增加。与糖尿病 Ntg 小鼠相比,糖尿病 dnPI3K 小鼠表现出更严重的心肌病表型。相比之下,糖尿病 caPI3K 小鼠对舒张功能障碍、病理性心肌细胞肥大、纤维化和细胞凋亡具有保护作用。糖尿病 caPI3K 小鼠的保护作用与左心室超氧化物生成减少、Anp、Bnp、PKCβ2、Ask1 和 p22(phox)表达减少以及 AKT 升高有关。此外,在心肌细胞样细胞中,增加的 PI3K(p110α)活性抑制高葡萄糖诱导的超氧化物生成并增强线粒体功能。
结论/解释:这些结果表明,降低 PI3K 活性会加速糖尿病心肌病的发展,而增强 PI3K(p110α)活性可以预防糖尿病环境中心脏重塑和功能障碍。