University of California-Berkeley, Berkeley, California, USA.
Appl Environ Microbiol. 2012 Dec;78(23):8321-30. doi: 10.1128/AEM.01938-12. Epub 2012 Sep 21.
Archaea are widely distributed and yet are most often not the most abundant members of microbial communities. Here, we document a transition from Bacteria- to Archaea-dominated communities in microbial biofilms sampled from the Richmond Mine acid mine drainage (AMD) system (∼pH 1.0, ∼38°C) and in laboratory-cultivated biofilms. This transition occurs when chemoautotrophic microbial communities that develop at the air-solution interface sink to the sediment-solution interface and degrade under microaerobic and anaerobic conditions. The archaea identified in these sunken biofilms are from the class Thermoplasmata, and in some cases, the highly divergent ARMAN nanoarchaeal lineage. In several of the sunken biofilms, nanoarchaea comprise 10 to 25% of the community, based on fluorescent in situ hybridization and metagenomic analyses. Comparative community proteomic analyses show a persistence of bacterial proteins in sunken biofilms, but there is clear evidence for amino acid modifications due to acid hydrolysis. Given the low representation of bacterial cells in sunken biofilms based on microscopy, we infer that hydrolysis reflects proteins derived from lysed cells. For archaea, we detected ∼2,400 distinct proteins, including a subset involved in proteolysis and peptide uptake. Laboratory cultivation experiments using complex carbon substrates demonstrated anaerobic enrichment of Ferroplasma and Aplasma coupled to the reduction of ferric iron. These findings indicate dominance of acidophilic archaea in degrading biofilms and suggest that they play roles in anaerobic nutrient cycling at low pH.
古菌广泛分布,但通常不是微生物群落中最丰富的成员。在这里,我们记录了从微生物生物膜中细菌主导的群落向古菌主导的群落的转变,这些生物膜来自里士满矿酸性矿山排水(AMD)系统(约 pH 值 1.0,约 38°C)和实验室培养的生物膜。这种转变发生在当在空气-溶液界面发育的化能自养微生物群落下沉到沉积物-溶液界面并在微需氧和厌氧条件下降解时。在这些下沉的生物膜中鉴定出的古菌来自热原体类,在某些情况下,来自高度发散的 ARMAN 纳米古菌谱系。在几个下沉的生物膜中,纳米古菌占群落的 10%至 25%,基于荧光原位杂交和宏基因组分析。比较社区蛋白质组学分析表明,在下沉的生物膜中存在细菌蛋白质的持久性,但由于酸水解,有明显的氨基酸修饰证据。鉴于基于显微镜的下沉生物膜中细菌细胞的低代表性,我们推断水解反映了来自裂解细胞的蛋白质。对于古菌,我们检测到约 2400 种不同的蛋白质,包括参与蛋白水解和肽摄取的蛋白质子集。使用复杂碳底物的实验室培养实验表明,Ferroplasma 和 Aplasma 的厌氧富集与三价铁的还原有关。这些发现表明嗜酸古菌在降解生物膜中占主导地位,并表明它们在低 pH 值下的厌氧养分循环中发挥作用。