Suppr超能文献

异养古菌促进了低 pH 值、缺氧生物膜群落中的碳循环。

Heterotrophic archaea contribute to carbon cycling in low-pH, suboxic biofilm communities.

机构信息

University of California-Berkeley, Berkeley, California, USA.

出版信息

Appl Environ Microbiol. 2012 Dec;78(23):8321-30. doi: 10.1128/AEM.01938-12. Epub 2012 Sep 21.

Abstract

Archaea are widely distributed and yet are most often not the most abundant members of microbial communities. Here, we document a transition from Bacteria- to Archaea-dominated communities in microbial biofilms sampled from the Richmond Mine acid mine drainage (AMD) system (∼pH 1.0, ∼38°C) and in laboratory-cultivated biofilms. This transition occurs when chemoautotrophic microbial communities that develop at the air-solution interface sink to the sediment-solution interface and degrade under microaerobic and anaerobic conditions. The archaea identified in these sunken biofilms are from the class Thermoplasmata, and in some cases, the highly divergent ARMAN nanoarchaeal lineage. In several of the sunken biofilms, nanoarchaea comprise 10 to 25% of the community, based on fluorescent in situ hybridization and metagenomic analyses. Comparative community proteomic analyses show a persistence of bacterial proteins in sunken biofilms, but there is clear evidence for amino acid modifications due to acid hydrolysis. Given the low representation of bacterial cells in sunken biofilms based on microscopy, we infer that hydrolysis reflects proteins derived from lysed cells. For archaea, we detected ∼2,400 distinct proteins, including a subset involved in proteolysis and peptide uptake. Laboratory cultivation experiments using complex carbon substrates demonstrated anaerobic enrichment of Ferroplasma and Aplasma coupled to the reduction of ferric iron. These findings indicate dominance of acidophilic archaea in degrading biofilms and suggest that they play roles in anaerobic nutrient cycling at low pH.

摘要

古菌广泛分布,但通常不是微生物群落中最丰富的成员。在这里,我们记录了从微生物生物膜中细菌主导的群落向古菌主导的群落的转变,这些生物膜来自里士满矿酸性矿山排水(AMD)系统(约 pH 值 1.0,约 38°C)和实验室培养的生物膜。这种转变发生在当在空气-溶液界面发育的化能自养微生物群落下沉到沉积物-溶液界面并在微需氧和厌氧条件下降解时。在这些下沉的生物膜中鉴定出的古菌来自热原体类,在某些情况下,来自高度发散的 ARMAN 纳米古菌谱系。在几个下沉的生物膜中,纳米古菌占群落的 10%至 25%,基于荧光原位杂交和宏基因组分析。比较社区蛋白质组学分析表明,在下沉的生物膜中存在细菌蛋白质的持久性,但由于酸水解,有明显的氨基酸修饰证据。鉴于基于显微镜的下沉生物膜中细菌细胞的低代表性,我们推断水解反映了来自裂解细胞的蛋白质。对于古菌,我们检测到约 2400 种不同的蛋白质,包括参与蛋白水解和肽摄取的蛋白质子集。使用复杂碳底物的实验室培养实验表明,Ferroplasma 和 Aplasma 的厌氧富集与三价铁的还原有关。这些发现表明嗜酸古菌在降解生物膜中占主导地位,并表明它们在低 pH 值下的厌氧养分循环中发挥作用。

相似文献

1
Heterotrophic archaea contribute to carbon cycling in low-pH, suboxic biofilm communities.
Appl Environ Microbiol. 2012 Dec;78(23):8321-30. doi: 10.1128/AEM.01938-12. Epub 2012 Sep 21.
2
Oxygen-dependent niche formation of a pyrite-dependent acidophilic consortium built by archaea and bacteria.
ISME J. 2013 Sep;7(9):1725-37. doi: 10.1038/ismej.2013.64. Epub 2013 Apr 25.
3
Macroscopic biofilms in fracture-dominated sediment that anaerobically oxidize methane.
Appl Environ Microbiol. 2011 Oct;77(19):6780-7. doi: 10.1128/AEM.00288-11. Epub 2011 Aug 5.
4
Microbial community composition and dynamics of moving bed biofilm reactor systems treating municipal sewage.
Appl Environ Microbiol. 2012 Feb;78(3):855-64. doi: 10.1128/AEM.06570-11. Epub 2011 Dec 2.
6
Record of archaeal activity at the serpentinite-hosted Lost City Hydrothermal Field.
Geobiology. 2013 Nov;11(6):570-92. doi: 10.1111/gbi.12062.
8
9
Complementary Microorganisms in Highly Corrosive Biofilms from an Offshore Oil Production Facility.
Appl Environ Microbiol. 2016 Apr 4;82(8):2545-2554. doi: 10.1128/AEM.03842-15. Print 2016 Apr.
10
Microbial stratification in low pH oxic and suboxic macroscopic growths along an acid mine drainage.
ISME J. 2014 Jun;8(6):1259-74. doi: 10.1038/ismej.2013.242. Epub 2014 Jan 16.

引用本文的文献

1
Navigating the archaeal frontier: insights and projections from bioinformatic pipelines.
Front Microbiol. 2024 Sep 23;15:1433224. doi: 10.3389/fmicb.2024.1433224. eCollection 2024.
2
Ultraviolet control of bacterial biofilms in microfluidic chips.
Biomicrofluidics. 2023 Apr 25;17(2):024107. doi: 10.1063/5.0135722. eCollection 2023 Mar.
3
Thermoplasmata and Nitrososphaeria as dominant archaeal members in acid mine drainage sediment of Malanjkhand Copper Project, India.
Arch Microbiol. 2021 May;203(4):1833-1841. doi: 10.1007/s00203-020-02130-4. Epub 2021 Jan 2.
5
The Role of Stress Proteins in Haloarchaea and Their Adaptive Response to Environmental Shifts.
Biomolecules. 2020 Sep 29;10(10):1390. doi: 10.3390/biom10101390.
6
Metabolic versatility of freshwater sedimentary archaea feeding on different organic carbon sources.
PLoS One. 2020 Apr 8;15(4):e0231238. doi: 10.1371/journal.pone.0231238. eCollection 2020.
7
Acid Mine Drainage as Habitats for Distinct Microbiomes: Current Knowledge in the Era of Molecular and Omic Technologies.
Curr Microbiol. 2020 Apr;77(4):657-674. doi: 10.1007/s00284-019-01771-z. Epub 2019 Sep 21.
9
Cuniculiplasmataceae, their ecogenomic and metabolic patterns, and interactions with 'ARMAN'.
Extremophiles. 2019 Jan;23(1):1-7. doi: 10.1007/s00792-018-1071-2. Epub 2018 Nov 29.
10
Active microbial biofilms in deep poor porous continental subsurface rocks.
Sci Rep. 2018 Jan 24;8(1):1538. doi: 10.1038/s41598-018-19903-z.

本文引用的文献

1
Acid mine drainage biogeochemistry at Iron Mountain, California.
Geochem Trans. 2004 Jun 30;5(2):13. doi: 10.1186/1467-4866-5-13. eCollection 2004.
2
An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database.
J Am Soc Mass Spectrom. 1994 Nov;5(11):976-89. doi: 10.1016/1044-0305(94)80016-2.
3
4
5
Microbial diversity in anaerobic sediments at Rio Tinto, a naturally acidic environment with a high heavy metal content.
Appl Environ Microbiol. 2011 Sep;77(17):6085-93. doi: 10.1128/AEM.00654-11. Epub 2011 Jul 1.
6
Microbial ecology of the dark ocean above, at, and below the seafloor.
Microbiol Mol Biol Rev. 2011 Jun;75(2):361-422. doi: 10.1128/MMBR.00039-10.
8
Quantitative proteomic analyses of the response of acidophilic microbial communities to different pH conditions.
ISME J. 2011 Jul;5(7):1152-61. doi: 10.1038/ismej.2010.200. Epub 2011 Jan 13.
9
Search and clustering orders of magnitude faster than BLAST.
Bioinformatics. 2010 Oct 1;26(19):2460-1. doi: 10.1093/bioinformatics/btq461. Epub 2010 Aug 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验