Bioinformatics Program, University of California San Diego, La Jolla, California, USA.
Mol Cell Proteomics. 2013 Jan;12(1):14-28. doi: 10.1074/mcp.M112.019075. Epub 2012 Sep 23.
N-terminal methionine excision (NME) and N-terminal acetylation (NTA) are two of the most common protein post-translational modifications. NME is a universally conserved activity and a highly specific mechanism across all life forms. NTA is very common in eukaryotes but occurs rarely in prokaryotes. By analyzing data sets from yeast, mammals and bacteria (including 112 million spectra from 57 bacterial species), the largest comparative proteogenomics study to date, it is shown that previous assumptions/perceptions about the specificity and purposes of NME are not entirely correct. Although NME, through the universal enzymatic specificity of the methionine aminopeptidases, results in the removal of the initiator Met in proteins when the second residue is Gly, Ala, Ser, Cys, Thr, Pro, or Val, the comparative genomic analyses suggest that this specificity may vary modestly in some organisms. In addition, the functional role of NME may be primarily to expose Ala and Ser rather than all seven of these residues. Although any of this group provide "stabilizing" N termini in the N-end rule, and de facto leave the remaining 13 amino acid types that are classed as "destabilizing" (in higher eukaryotes) protected by the initiator Met, the conservation of NME-substrate proteins through evolution suggests that the other five are not crucially important for proteins with these residues in the second position. They are apparently merely inconsequential players (their function is not affected by NME) that become exposed because their side chains are smaller or comparable to those of Ala and Ser. The importance of exposing mainly two amino acids at the N terminus, i.e. Ala and Ser, is unclear but may be related to NTA or other post-translational modifications. In this regard, these analyses also reveal that NTA is more prevalent in some prokaryotes than previously appreciated.
N-端甲硫氨酸切除(NME)和 N-端乙酰化(NTA)是两种最常见的蛋白质翻译后修饰。NME 是一种普遍保守的活性,是所有生命形式中高度特异的机制。NTA 在真核生物中非常普遍,但在原核生物中很少发生。通过分析来自酵母、哺乳动物和细菌的数据集(包括来自 57 个细菌物种的 1.12 亿个光谱),这是迄今为止最大的比较蛋白质基因组学研究,表明以前关于 NME 的特异性和目的的假设/看法并不完全正确。尽管 NME 通过甲硫氨酸氨肽酶的普遍酶特异性,导致当第二个残基是甘氨酸、丙氨酸、丝氨酸、半胱氨酸、苏氨酸、脯氨酸或缬氨酸时,蛋白质中起始 Met 的去除,但比较基因组分析表明,这种特异性在某些生物体中可能略有变化。此外,NME 的功能作用可能主要是暴露 Ala 和 Ser,而不是这 7 个残基中的所有。尽管这组中的任何一个都可以在 N 端规则中提供“稳定”的 N 端,并且事实上使被归类为“不稳定”的其余 13 种氨基酸类型(在高等真核生物中)受到起始 Met 的保护,但 NME 底物蛋白在进化中的保守性表明,其他五个对第二个位置具有这些残基的蛋白质并不是至关重要的。它们显然只是无关紧要的角色(它们的功能不受 NME 影响),因为它们的侧链比 Ala 和 Ser 小或相当,所以暴露出来。主要在 N 端暴露两种氨基酸(即 Ala 和 Ser)的重要性尚不清楚,但可能与 NTA 或其他翻译后修饰有关。在这方面,这些分析还表明,NTA 在一些原核生物中的普遍性比以前认为的要高。