Department of Materials Science & Engineering, University of Florida, Gainesville, Florida 32611, USA.
ACS Nano. 2012 Oct 23;6(10):9095-102. doi: 10.1021/nn303848k. Epub 2012 Sep 28.
An improved process for graphene transfer was used to demonstrate high performance graphene enabled vertical organic field effect transistors (G-VFETs). The process reduces disorder and eliminates the polymeric residue that typically plagues transferred films. The method also allows for purposely creating pores in the graphene of a controlled areal density. Transconductance observed in G-VFETs fabricated with a continuous (pore-free) graphene source electrode is attributed to modulation of the contact barrier height between the graphene and organic semiconductor due to a gate field induced Fermi level shift in the low density of electronic-states graphene electrode. Pores introduced in the graphene source electrode are shown to boost the G-VFET performance, which scales with the areal pore density taking advantage of both barrier height lowering and tunnel barrier thinning. Devices with areal pore densities of 20% exhibit on/off ratios and output current densities exceeding 10(6) and 200 mA/cm(2), respectively, at drain voltages below 5 V.
采用一种改进的石墨烯转移工艺,成功制备了高性能的基于石墨烯的垂直有机场效应晶体管(G-VFET)。该工艺减少了无序并消除了通常困扰转移薄膜的聚合物残留。该方法还允许在石墨烯中有意地形成具有受控面密度的孔。在使用具有连续(无孔)石墨烯源电极的 G-VFET 中观察到的跨导归因于石墨烯和有机半导体之间的接触势垒高度由于栅极场引起的费米能级在低电子态密度石墨烯电极中的转移而发生调制。结果表明,在石墨烯源电极中引入的孔可以提高 G-VFET 的性能,其性能与面密度孔密度成正比,从而利用势垒降低和隧道势垒变薄的优势。具有 20%面密度孔的器件在低于 5 V 的漏极电压下的开/关比和输出电流密度分别超过 10(6)和 200 mA/cm(2)。