Suppr超能文献

使用主成分对函数型数据进行校正的置信带

Corrected confidence bands for functional data using principal components.

作者信息

Goldsmith J, Greven S, Crainiceanu C

机构信息

Department of Biostatistics, Columbia University, New York, New York 10032, USA.

出版信息

Biometrics. 2013 Mar;69(1):41-51. doi: 10.1111/j.1541-0420.2012.01808.x. Epub 2012 Sep 24.

Abstract

Functional principal components (FPC) analysis is widely used to decompose and express functional observations. Curve estimates implicitly condition on basis functions and other quantities derived from FPC decompositions; however these objects are unknown in practice. In this article, we propose a method for obtaining correct curve estimates by accounting for uncertainty in FPC decompositions. Additionally, pointwise and simultaneous confidence intervals that account for both model- and decomposition-based variability are constructed. Standard mixed model representations of functional expansions are used to construct curve estimates and variances conditional on a specific decomposition. Iterated expectation and variance formulas combine model-based conditional estimates across the distribution of decompositions. A bootstrap procedure is implemented to understand the uncertainty in principal component decomposition quantities. Our method compares favorably to competing approaches in simulation studies that include both densely and sparsely observed functions. We apply our method to sparse observations of CD4 cell counts and to dense white-matter tract profiles. Code for the analyses and simulations is publicly available, and our method is implemented in the R package refund on CRAN.

摘要

功能主成分(FPC)分析被广泛用于分解和表达功能观测值。曲线估计隐含地依赖于基函数和从FPC分解中导出的其他量;然而,这些对象在实际中是未知的。在本文中,我们提出了一种通过考虑FPC分解中的不确定性来获得正确曲线估计的方法。此外,还构建了考虑基于模型和基于分解的变异性的逐点和同时置信区间。功能展开的标准混合模型表示用于构建基于特定分解的曲线估计和方差。迭代期望和方差公式结合了跨分解分布的基于模型的条件估计。实施了一个自助程序来理解主成分分解量中的不确定性。在包括密集和稀疏观测函数的模拟研究中,我们的方法优于竞争方法。我们将我们的方法应用于CD4细胞计数的稀疏观测和密集的白质束轮廓。分析和模拟的代码是公开可用的,并且我们的方法在CRAN上的R包refund中实现。

相似文献

1
Corrected confidence bands for functional data using principal components.
Biometrics. 2013 Mar;69(1):41-51. doi: 10.1111/j.1541-0420.2012.01808.x. Epub 2012 Sep 24.
2
Tolerance bands for functional data.
Biometrics. 2016 Jun;72(2):503-12. doi: 10.1111/biom.12434. Epub 2015 Nov 17.
3
Incorporating covariates in skewed functional data models.
Biostatistics. 2015 Jul;16(3):413-26. doi: 10.1093/biostatistics/kxu055. Epub 2014 Dec 19.
4
Efficient use of longitudinal CD4 counts and viral load measures in survival analysis.
Stat Med. 2012 Aug 30;31(19):2086-97. doi: 10.1002/sim.5318. Epub 2012 Mar 13.
5
An introduction with medical applications to functional data analysis.
Stat Med. 2013 Dec 30;32(30):5222-40. doi: 10.1002/sim.5989. Epub 2013 Sep 30.
6
Constructing bootstrap confidence intervals for principal component loadings in the presence of missing data: a multiple-imputation approach.
Br J Math Stat Psychol. 2011 Nov;64(3):498-515. doi: 10.1111/j.2044-8317.2010.02006.x. Epub 2010 Dec 15.
7
Model-based principal components of covariance matrices.
Br J Math Stat Psychol. 2010 Feb;63(Pt 1):113-37. doi: 10.1348/000711009X428189. Epub 2009 Jun 16.
8
Hybrid principal components analysis for region-referenced longitudinal functional EEG data.
Biostatistics. 2020 Jan 1;21(1):139-157. doi: 10.1093/biostatistics/kxy034.
10
Confidence bands in survival analysis.
Br J Cancer. 2022 Nov;127(9):1636-1641. doi: 10.1038/s41416-022-01920-5. Epub 2022 Aug 19.

引用本文的文献

1
CAUSAL MEDIATION ANALYSIS FOR SPARSE AND IRREGULAR LONGITUDINAL DATA.
Ann Appl Stat. 2021 Jun;15(2):747-767. doi: 10.1214/20-aoas1427. Epub 2021 Jul 12.
2
Prediction intervals and bands with improved coverage for functional data under noisy discrete observation.
J Appl Stat. 2024 Oct 28;52(6):1258-1277. doi: 10.1080/02664763.2024.2420223. eCollection 2025.
3
A Bayesian semi-parametric scalar-on-function regression with measurement error using instrumental variables.
Stat Med. 2024 Sep 20;43(21):4043-4054. doi: 10.1002/sim.10165. Epub 2024 Jul 8.
4
Using functional principal component analysis (FPCA) to quantify sitting patterns derived from wearable sensors.
Int J Behav Nutr Phys Act. 2024 Apr 26;21(1):48. doi: 10.1186/s12966-024-01585-8.
5
A Causal Mediation Model for Longitudinal Mediators and Survival Outcomes with an Application to Animal Behavior.
J Agric Biol Environ Stat. 2023 Jun;28(2):197-218. doi: 10.1007/s13253-022-00490-6. Epub 2022 Apr 5.
6
Reinforced risk prediction with budget constraint using irregularly measured data from electronic health records.
J Am Stat Assoc. 2023;118(542):1090-1101. doi: 10.1080/01621459.2021.1978467. Epub 2021 Nov 30.
7
A functional model for studying common trends across trial time in eye tracking experiments.
Stat Biosci. 2023 Apr;15(1):261-287. doi: 10.1007/s12561-022-09354-6. Epub 2022 Sep 5.
8
A LAG FUNCTIONAL LINEAR MODEL FOR PREDICTION OF MAGNETIZATION TRANSFER RATIO IN MULTIPLE SCLEROSIS LESIONS.
Ann Appl Stat. 2016 Dec;10(4):2325-2348. doi: 10.1214/16-aoas981. Epub 2017 Jan 5.
9
A classification for complex imbalanced data in disease screening and early diagnosis.
Stat Med. 2022 Aug 30;41(19):3679-3695. doi: 10.1002/sim.9442. Epub 2022 May 23.
10
Using real-world accelerometry-derived diurnal patterns of physical activity to evaluate disability in multiple sclerosis.
J Rehabil Assist Technol Eng. 2022 Jan 12;9:20556683211067362. doi: 10.1177/20556683211067362. eCollection 2022 Jan-Dec.

本文引用的文献

1
Bootstrap-based inference on the difference in the means of two correlated functional processes.
Stat Med. 2012 Nov 20;31(26):3223-40. doi: 10.1002/sim.5439. Epub 2012 Aug 1.
2
Longitudinal Penalized Functional Regression for Cognitive Outcomes on Neuronal Tract Measurements.
J R Stat Soc Ser C Appl Stat. 2012 May;61(3):453-469. doi: 10.1111/j.1467-9876.2011.01031.x. Epub 2012 Jan 5.
3
Longitudinal functional principal component analysis.
Electron J Stat. 2010;4:1022-1054. doi: 10.1214/10-EJS575.
4
Bayesian Functional Data Analysis Using WinBUGS.
J Stat Softw. 2010 Jan 1;32(11).
5
Penalized functional regression analysis of white-matter tract profiles in multiple sclerosis.
Neuroimage. 2011 Jul 15;57(2):431-9. doi: 10.1016/j.neuroimage.2011.04.044. Epub 2011 Apr 30.
6
MULTILEVEL FUNCTIONAL PRINCIPAL COMPONENT ANALYSIS.
Ann Appl Stat. 2009 Mar 1;3(1):458-488. doi: 10.1214/08-AOAS206SUPP.
8
Diffusion tensor imaging: concepts and applications.
J Magn Reson Imaging. 2001 Apr;13(4):534-46. doi: 10.1002/jmri.1076.
9
Nonparametric mixed effects models for unequally sampled noisy curves.
Biometrics. 2001 Mar;57(1):253-9. doi: 10.1111/j.0006-341x.2001.00253.x.
10
In vivo fiber tractography using DT-MRI data.
Magn Reson Med. 2000 Oct;44(4):625-32. doi: 10.1002/1522-2594(200010)44:4<625::aid-mrm17>3.0.co;2-o.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验