Goldsmith J, Greven S, Crainiceanu C
Department of Biostatistics, Columbia University, New York, New York 10032, USA.
Biometrics. 2013 Mar;69(1):41-51. doi: 10.1111/j.1541-0420.2012.01808.x. Epub 2012 Sep 24.
Functional principal components (FPC) analysis is widely used to decompose and express functional observations. Curve estimates implicitly condition on basis functions and other quantities derived from FPC decompositions; however these objects are unknown in practice. In this article, we propose a method for obtaining correct curve estimates by accounting for uncertainty in FPC decompositions. Additionally, pointwise and simultaneous confidence intervals that account for both model- and decomposition-based variability are constructed. Standard mixed model representations of functional expansions are used to construct curve estimates and variances conditional on a specific decomposition. Iterated expectation and variance formulas combine model-based conditional estimates across the distribution of decompositions. A bootstrap procedure is implemented to understand the uncertainty in principal component decomposition quantities. Our method compares favorably to competing approaches in simulation studies that include both densely and sparsely observed functions. We apply our method to sparse observations of CD4 cell counts and to dense white-matter tract profiles. Code for the analyses and simulations is publicly available, and our method is implemented in the R package refund on CRAN.
功能主成分(FPC)分析被广泛用于分解和表达功能观测值。曲线估计隐含地依赖于基函数和从FPC分解中导出的其他量;然而,这些对象在实际中是未知的。在本文中,我们提出了一种通过考虑FPC分解中的不确定性来获得正确曲线估计的方法。此外,还构建了考虑基于模型和基于分解的变异性的逐点和同时置信区间。功能展开的标准混合模型表示用于构建基于特定分解的曲线估计和方差。迭代期望和方差公式结合了跨分解分布的基于模型的条件估计。实施了一个自助程序来理解主成分分解量中的不确定性。在包括密集和稀疏观测函数的模拟研究中,我们的方法优于竞争方法。我们将我们的方法应用于CD4细胞计数的稀疏观测和密集的白质束轮廓。分析和模拟的代码是公开可用的,并且我们的方法在CRAN上的R包refund中实现。