Suppr超能文献

使用主成分对函数型数据进行校正的置信带

Corrected confidence bands for functional data using principal components.

作者信息

Goldsmith J, Greven S, Crainiceanu C

机构信息

Department of Biostatistics, Columbia University, New York, New York 10032, USA.

出版信息

Biometrics. 2013 Mar;69(1):41-51. doi: 10.1111/j.1541-0420.2012.01808.x. Epub 2012 Sep 24.

Abstract

Functional principal components (FPC) analysis is widely used to decompose and express functional observations. Curve estimates implicitly condition on basis functions and other quantities derived from FPC decompositions; however these objects are unknown in practice. In this article, we propose a method for obtaining correct curve estimates by accounting for uncertainty in FPC decompositions. Additionally, pointwise and simultaneous confidence intervals that account for both model- and decomposition-based variability are constructed. Standard mixed model representations of functional expansions are used to construct curve estimates and variances conditional on a specific decomposition. Iterated expectation and variance formulas combine model-based conditional estimates across the distribution of decompositions. A bootstrap procedure is implemented to understand the uncertainty in principal component decomposition quantities. Our method compares favorably to competing approaches in simulation studies that include both densely and sparsely observed functions. We apply our method to sparse observations of CD4 cell counts and to dense white-matter tract profiles. Code for the analyses and simulations is publicly available, and our method is implemented in the R package refund on CRAN.

摘要

功能主成分(FPC)分析被广泛用于分解和表达功能观测值。曲线估计隐含地依赖于基函数和从FPC分解中导出的其他量;然而,这些对象在实际中是未知的。在本文中,我们提出了一种通过考虑FPC分解中的不确定性来获得正确曲线估计的方法。此外,还构建了考虑基于模型和基于分解的变异性的逐点和同时置信区间。功能展开的标准混合模型表示用于构建基于特定分解的曲线估计和方差。迭代期望和方差公式结合了跨分解分布的基于模型的条件估计。实施了一个自助程序来理解主成分分解量中的不确定性。在包括密集和稀疏观测函数的模拟研究中,我们的方法优于竞争方法。我们将我们的方法应用于CD4细胞计数的稀疏观测和密集的白质束轮廓。分析和模拟的代码是公开可用的,并且我们的方法在CRAN上的R包refund中实现。

相似文献

1
Corrected confidence bands for functional data using principal components.使用主成分对函数型数据进行校正的置信带
Biometrics. 2013 Mar;69(1):41-51. doi: 10.1111/j.1541-0420.2012.01808.x. Epub 2012 Sep 24.
2
Tolerance bands for functional data.功能数据的公差带
Biometrics. 2016 Jun;72(2):503-12. doi: 10.1111/biom.12434. Epub 2015 Nov 17.
3
Incorporating covariates in skewed functional data models.在偏态函数数据模型中纳入协变量。
Biostatistics. 2015 Jul;16(3):413-26. doi: 10.1093/biostatistics/kxu055. Epub 2014 Dec 19.
5
An introduction with medical applications to functional data analysis.功能数据分析的医学应用介绍。
Stat Med. 2013 Dec 30;32(30):5222-40. doi: 10.1002/sim.5989. Epub 2013 Sep 30.
7
Model-based principal components of covariance matrices.基于模型的协方差矩阵主成分分析。
Br J Math Stat Psychol. 2010 Feb;63(Pt 1):113-37. doi: 10.1348/000711009X428189. Epub 2009 Jun 16.
10
Confidence bands in survival analysis.生存分析中的置信带。
Br J Cancer. 2022 Nov;127(9):1636-1641. doi: 10.1038/s41416-022-01920-5. Epub 2022 Aug 19.

引用本文的文献

1
CAUSAL MEDIATION ANALYSIS FOR SPARSE AND IRREGULAR LONGITUDINAL DATA.稀疏和不规则纵向数据的因果中介分析
Ann Appl Stat. 2021 Jun;15(2):747-767. doi: 10.1214/20-aoas1427. Epub 2021 Jul 12.

本文引用的文献

2
Longitudinal Penalized Functional Regression for Cognitive Outcomes on Neuronal Tract Measurements.基于神经束测量的认知结果的纵向惩罚函数回归
J R Stat Soc Ser C Appl Stat. 2012 May;61(3):453-469. doi: 10.1111/j.1467-9876.2011.01031.x. Epub 2012 Jan 5.
3
Longitudinal functional principal component analysis.纵向功能主成分分析
Electron J Stat. 2010;4:1022-1054. doi: 10.1214/10-EJS575.
6
MULTILEVEL FUNCTIONAL PRINCIPAL COMPONENT ANALYSIS.多级功能主成分分析
Ann Appl Stat. 2009 Mar 1;3(1):458-488. doi: 10.1214/08-AOAS206SUPP.
8
Diffusion tensor imaging: concepts and applications.扩散张量成像:概念与应用
J Magn Reson Imaging. 2001 Apr;13(4):534-46. doi: 10.1002/jmri.1076.
10
In vivo fiber tractography using DT-MRI data.使用扩散张量磁共振成像(DT-MRI)数据进行活体纤维束成像。
Magn Reson Med. 2000 Oct;44(4):625-32. doi: 10.1002/1522-2594(200010)44:4<625::aid-mrm17>3.0.co;2-o.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验