Suppr超能文献

利用电子健康记录中的不规则测量数据进行预算约束下的强化风险预测。

Reinforced risk prediction with budget constraint using irregularly measured data from electronic health records.

作者信息

Pan Yinghao, Laber Eric B, Smith Maureen A, Zhao Ying-Qi

机构信息

Department of Mathematics and Statistics, University of North Carolina at Charlotte.

Department of Statistics, North Carolina State University.

出版信息

J Am Stat Assoc. 2023;118(542):1090-1101. doi: 10.1080/01621459.2021.1978467. Epub 2021 Nov 30.

Abstract

Uncontrolled glycated hemoglobin (HbA1c) levels are associated with adverse events among complex diabetic patients. These adverse events present serious health risks to affected patients and are associated with significant financial costs. Thus, a high-quality predictive model that could identify high-risk patients so as to inform preventative treatment has the potential to improve patient outcomes while reducing healthcare costs. Because the biomarker information needed to predict risk is costly and burdensome, it is desirable that such a model collect only as much information as is needed on each patient so as to render an accurate prediction. We propose a sequential predictive model that uses accumulating patient longitudinal data to classify patients as: high-risk, low-risk, or uncertain. Patients classified as high-risk are then recommended to receive preventative treatment and those classified as low-risk are recommended to standard care. Patients classified as uncertain are monitored until a high-risk or low-risk determination is made. We construct the model using claims and enrollment files from Medicare, linked with patient Electronic Health Records (EHR) data. The proposed model uses functional principal components to accommodate noisy longitudinal data and weighting to deal with missingness and sampling bias. The proposed method demonstrates higher predictive accuracy and lower cost than competing methods in a series of simulation experiments and application to data on complex patients with diabetes.

摘要

未得到控制的糖化血红蛋白(HbA1c)水平与复杂糖尿病患者的不良事件相关。这些不良事件给受影响的患者带来严重的健康风险,并导致巨大的经济成本。因此,一个高质量的预测模型,能够识别高危患者以便指导预防性治疗,有可能改善患者的治疗结果,同时降低医疗成本。由于预测风险所需的生物标志物信息成本高昂且获取困难,理想的情况是这样一个模型在每个患者身上仅收集所需的尽可能少的信息,以便做出准确的预测。我们提出一种序贯预测模型,该模型利用不断积累的患者纵向数据将患者分类为:高危、低危或不确定。被分类为高危的患者随后被建议接受预防性治疗,而被分类为低危的患者则被建议接受标准治疗。被分类为不确定的患者则进行监测,直到做出高危或低危的判定。我们使用医疗保险的理赔和参保文件构建该模型,并将其与患者电子健康记录(EHR)数据相链接。所提出的模型使用功能主成分来处理有噪声的纵向数据,并使用加权来处理数据缺失和抽样偏差。在一系列模拟实验以及应用于复杂糖尿病患者数据时,所提出的方法比其他竞争方法表现出更高的预测准确性和更低的成本。

相似文献

3
4
Adult patient access to electronic health records.成年患者获取电子健康记录。
Cochrane Database Syst Rev. 2021 Feb 26;2(2):CD012707. doi: 10.1002/14651858.CD012707.pub2.
5
7

本文引用的文献

1
Functional feature construction for individualized treatment regimes.个性化治疗方案的功能特征构建
J Am Stat Assoc. 2017;113(523):1219-1227. doi: 10.1080/01621459.2017.1321545. Epub 2017 Jun 26.
2
6. Glycemic Targets: .6. 血糖目标: 。
Diabetes Care. 2018 Jan;41(Suppl 1):S55-S64. doi: 10.2337/dc18-S006.
10
Corrected confidence bands for functional data using principal components.使用主成分对函数型数据进行校正的置信带
Biometrics. 2013 Mar;69(1):41-51. doi: 10.1111/j.1541-0420.2012.01808.x. Epub 2012 Sep 24.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验