Suppr超能文献

构建有缺失数据时主成分载荷的自举置信区间:一种多重插补方法。

Constructing bootstrap confidence intervals for principal component loadings in the presence of missing data: a multiple-imputation approach.

机构信息

Leiden University, The Netherlands University of Groningen, The Netherlands.

出版信息

Br J Math Stat Psychol. 2011 Nov;64(3):498-515. doi: 10.1111/j.2044-8317.2010.02006.x. Epub 2010 Dec 15.

Abstract

Earlier research has shown that bootstrap confidence intervals from principal component loadings give a good coverage of the population loadings. However, this only applies to complete data. When data are incomplete, missing data have to be handled before analysing the data. Multiple imputation may be used for this purpose. The question is how bootstrap confidence intervals for principal component loadings should be corrected for multiply imputed data. In this paper, several solutions are proposed. Simulations show that the proposed corrections for multiply imputed data give a good coverage of the population loadings in various situations.

摘要

早期的研究表明,主成分载荷的自举置信区间可以很好地覆盖总体载荷。然而,这仅适用于完整数据。当数据不完整时,在分析数据之前必须处理缺失数据。为此可以使用多重插补。问题是,对于多重插补数据,应该如何校正主成分载荷的自举置信区间。本文提出了几种解决方案。模拟结果表明,对于各种情况,所提出的多重插补数据校正方法都能很好地覆盖总体载荷。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验