Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachuetts 02139-4307, USA.
Phys Rev Lett. 2012 Jun 1;108(22):226805. doi: 10.1103/PhysRevLett.108.226805.
We explain the nature of the electronic energy gap and optical absorption spectrum of carbon-boron-nitride (CBN) monolayers using density functional theory, GW and Bethe-Salpeter calculations. The band structure and the optical absorption are regulated by the C domain size rather than the composition (as customary for bulk semiconductor alloys). The C and BN quasiparticle states lie at separate energy for C and BN, with little mixing for energies near the band edge where states are chiefly C in character. The resulting optical absorption spectra show two distinct peaks whose energy and relative intensity vary with composition in agreement with the experiment. The monolayers present strongly bound excitons localized within the C domains, with binding energies of the order of 0.5-1.5 eV dependent on the C domain size. The optoelectronic properties result from the overall monolayer band structure, and cannot be understood as a superposition of the properties of bulklike C and BN domains.
我们使用密度泛函理论、GW 和 Bethe-Salpeter 计算解释了碳-硼-氮 (CBN) 单层的电子能隙和光吸收光谱的性质。能带结构和光吸收由 C 畴大小调节,而不是组成(如体半导体合金通常那样)。C 和 BN 准粒子态在 C 和 BN 处处于不同的能量,在能带边缘附近的能量处,态主要具有 C 的特征,混合很少。所得的光吸收光谱显示出两个明显的峰值,其能量和相对强度随组成而变化,与实验结果一致。单层呈现出强烈束缚的激子,定域在 C 畴内,结合能约为 0.5-1.5 eV,取决于 C 畴大小。光电性质源自于整个单层能带结构,不能理解为块状 C 和 BN 畴性质的叠加。