Suppr超能文献

用于三维点构型的完备且高效协变量及其在学习分子量子性质中的应用

Complete and Efficient Covariants for Three-Dimensional Point Configurations with Application to Learning Molecular Quantum Properties.

作者信息

Maennel Hartmut, Unke Oliver T, Müller Klaus-Robert

机构信息

Google DeepMind Zürich, Brandschenkestraße 110, 8002 Zürich, Switzerland.

Google DeepMind Berlin, Tucholskystraße 2, 10117 Berlin, Germany.

出版信息

J Phys Chem Lett. 2024 Dec 26;15(51):12513-12519. doi: 10.1021/acs.jpclett.4c02376. Epub 2024 Dec 13.

Abstract

When physical properties of molecules are being modeled with machine learning, it is desirable to incorporate (3)-covariance. While such models based on low body order features are not complete, we formulate and prove general completeness properties for higher order methods and show that 6 - 5 of these features are enough for up to atoms. We also find that the Clebsch-Gordan operations commonly used in these methods can be replaced by matrix multiplications without sacrificing completeness, lowering the scaling from () to () in the degree of the features. We apply this to quantum chemistry, but the proposed methods are generally applicable for problems involving three-dimensional point configurations.

摘要

当使用机器学习对分子的物理性质进行建模时,纳入(3)-协方差是很有必要的。虽然基于低阶特征的此类模型并不完备,但我们为高阶方法制定并证明了一般完备性性质,并表明其中6 - 5个这样的特征对于多达 个原子就足够了。我们还发现,这些方法中常用的克莱布施 - 戈尔丹运算可以用矩阵乘法来替代,而不会牺牲完备性,从而将特征次数的缩放比例从()降低到()。我们将此应用于量子化学,但所提出的方法通常适用于涉及三维点构型的问题。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e8c/11684023/9526e5bc84ef/jz4c02376_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验