Ardekani A M, Gore E
Aerospace and Mechanical Engineering, University of Notre Dame, Indiana 46556, USA.
Phys Rev E Stat Nonlin Soft Matter Phys. 2012 May;85(5 Pt 2):056309. doi: 10.1103/PhysRevE.85.056309. Epub 2012 May 22.
We propose that the rheological properties of background fluid play an important role in the interaction of microorganisms with the flow field. The viscoelastic-induced migration of microorganisms in a vortical flow leads to the emergence of a limit cycle. The shape and formation rate of patterns depend on motility, vorticity strength, and rheological properties of the background fluid. Given the inherent viscoelasticity of exopolysaccharides secreted by microorganisms, our results can suggest new mechanisms leading to the vital behavior of microorganisms such as bacterial aggregation and biofilm formation.
我们认为,背景流体的流变特性在微生物与流场的相互作用中起着重要作用。微生物在粘性诱导下在涡流中迁移会导致极限环的出现。图案的形状和形成速率取决于微生物的运动性、涡度强度以及背景流体的流变特性。鉴于微生物分泌的胞外多糖具有内在的粘弹性,我们的结果可以揭示导致微生物重要行为(如细菌聚集和生物膜形成)的新机制。