Suppr超能文献

边界积累热点:流动薄膜中微游动体的动力学与统计学

Hotspots of boundary accumulation: dynamics and statistics of micro-swimmers in flowing films.

作者信息

Mathijssen Arnold J T M, Doostmohammadi Amin, Yeomans Julia M, Shendruk Tyler N

机构信息

The Rudolf Peierls Centre for Theoretical Physics, 1 Keble Road, Oxford OX1 3NP, UK

The Rudolf Peierls Centre for Theoretical Physics, 1 Keble Road, Oxford OX1 3NP, UK.

出版信息

J R Soc Interface. 2016 Feb;13(115):20150936. doi: 10.1098/rsif.2015.0936.

Abstract

Biological flows over surfaces and interfaces can result in accumulation hotspots or depleted voids of microorganisms in natural environments. Apprehending the mechanisms that lead to such distributions is essential for understanding biofilm initiation. Using a systematic framework, we resolve the dynamics and statistics of swimming microbes within flowing films, considering the impact of confinement through steric and hydrodynamic interactions, flow and motility, along with Brownian and run-tumble fluctuations. Micro-swimmers can be peeled off the solid wall above a critical flow strength. However, the interplay of flow and fluctuations causes organisms to migrate back towards the wall above a secondary critical value. Hence, faster flows may not always be the most efficacious strategy to discourage biofilm initiation. Moreover, we find run-tumble dynamics commonly used by flagellated microbes to be an intrinsically more successful strategy to escape from boundaries than equivalent levels of enhanced Brownian noise in ciliated organisms.

摘要

生物在表面和界面上的流动会导致自然环境中微生物的聚集热点或耗尽的空洞。了解导致这种分布的机制对于理解生物膜的形成至关重要。我们使用一个系统框架,解析了流动薄膜中游泳微生物的动力学和统计学,考虑了空间位阻和流体动力学相互作用、流动和运动性以及布朗运动和随机转向波动所产生的限制影响。当流速超过临界强度时,微型游泳者会从固体壁上剥离。然而,流动和波动的相互作用会使生物体在超过第二个临界值时向壁面迁移。因此,更快的流速可能并不总是阻止生物膜形成的最有效策略。此外,我们发现鞭毛微生物常用的随机转向动力学在逃离边界方面本质上比纤毛生物体中同等水平的增强布朗噪声更成功。

相似文献

1
Hotspots of boundary accumulation: dynamics and statistics of micro-swimmers in flowing films.
J R Soc Interface. 2016 Feb;13(115):20150936. doi: 10.1098/rsif.2015.0936.
2
Hydrodynamic analysis of flagellated bacteria swimming near one and between two no-slip plane boundaries.
Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Mar;91(3):033012. doi: 10.1103/PhysRevE.91.033012. Epub 2015 Mar 20.
3
Unexpected bipolar flagellar arrangements and long-range flows driven by bacteria near solid boundaries.
Phys Rev Lett. 2008 Oct 17;101(16):168102. doi: 10.1103/PhysRevLett.101.168102. Epub 2008 Oct 16.
6
Effective shear viscosity and dynamics of suspensions of micro-swimmers from small to moderate concentrations.
J Math Biol. 2011 May;62(5):707-40. doi: 10.1007/s00285-010-0351-y. Epub 2010 Jun 20.
7
Velocity Condensation for Magnetotactic Bacteria.
Phys Rev Lett. 2016 Apr 22;116(16):168101. doi: 10.1103/PhysRevLett.116.168101. Epub 2016 Apr 20.
8
Scattering of low-Reynolds-number swimmers.
Phys Rev E Stat Nonlin Soft Matter Phys. 2008 Oct;78(4 Pt 2):045302. doi: 10.1103/PhysRevE.78.045302. Epub 2008 Oct 27.
9
Enhanced locomotion, effective diffusion and trapping of undulatory micro-swimmers in heterogeneous environments.
J R Soc Interface. 2018 Nov 28;15(148):20180592. doi: 10.1098/rsif.2018.0592.
10
Physics of bacterial near-surface motility using flagella and type IV pili: implications for biofilm formation.
Res Microbiol. 2012 Nov-Dec;163(9-10):619-29. doi: 10.1016/j.resmic.2012.10.016. Epub 2012 Oct 26.

引用本文的文献

1
2
Impact of intense sanitization procedures on bacterial communities recovered from floor drains in pork processing plants.
Front Microbiol. 2024 May 20;15:1379203. doi: 10.3389/fmicb.2024.1379203. eCollection 2024.
3
Oscillatory surface rheotaxis of swimming E. coli bacteria.
Nat Commun. 2019 Jul 31;10(1):3434. doi: 10.1038/s41467-019-11360-0.
4
Re-entrant bimodality in spheroidal chiral swimmers in shear flow.
Sci Rep. 2018 May 29;8(1):8328. doi: 10.1038/s41598-018-26771-0.
5
Swimming and rafting of E.coli microcolonies at air-liquid interfaces.
Microbiologyopen. 2018 Feb;7(1). doi: 10.1002/mbo3.532. Epub 2017 Oct 22.

本文引用的文献

1
Effect of solid boundaries on swimming dynamics of microorganisms in a viscoelastic fluid.
Rheol Acta. 2014 Dec;53(12):911-926. doi: 10.1007/s00397-014-0796-9. Epub 2014 Aug 31.
2
Upstream Swimming in Microbiological Flows.
Phys Rev Lett. 2016 Jan 15;116(2):028104. doi: 10.1103/PhysRevLett.116.028104.
3
Detention Times of Microswimmers Close to Surfaces: Influence of Hydrodynamic Interactions and Noise.
Phys Rev Lett. 2015 Jul 17;115(3):038101. doi: 10.1103/PhysRevLett.115.038101. Epub 2015 Jul 15.
4
Turning Bacteria Suspensions into Superfluids.
Phys Rev Lett. 2015 Jul 10;115(2):028301. doi: 10.1103/PhysRevLett.115.028301. Epub 2015 Jul 7.
5
Living on the edge: transfer and traffic of E. coli in a confined flow.
Soft Matter. 2015 Aug 21;11(31):6284-93. doi: 10.1039/c5sm00939a.
6
Films of bacteria at interfaces: three stages of behaviour.
Soft Matter. 2015 Aug 14;11(30):6062-74. doi: 10.1039/c5sm00696a. Epub 2015 Jul 2.
7
Physics of microswimmers--single particle motion and collective behavior: a review.
Rep Prog Phys. 2015 May;78(5):056601. doi: 10.1088/0034-4885/78/5/056601. Epub 2015 Apr 28.
8
Rhythmicity, recurrence, and recovery of flagellar beating.
Phys Rev Lett. 2014 Dec 5;113(23):238103. doi: 10.1103/PhysRevLett.113.238103. Epub 2014 Dec 2.
9
Interplay of physical mechanisms and biofilm processes: review of microfluidic methods.
Lab Chip. 2015 Jan 7;15(1):23-42. doi: 10.1039/c4lc01095g.
10
Swimming fluctuations of micro-organisms due to heterogeneous microstructure.
Phys Rev E Stat Nonlin Soft Matter Phys. 2014 Oct;90(4):043021. doi: 10.1103/PhysRevE.90.043021. Epub 2014 Oct 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验