Mathijssen Arnold J T M, Doostmohammadi Amin, Yeomans Julia M, Shendruk Tyler N
The Rudolf Peierls Centre for Theoretical Physics, 1 Keble Road, Oxford OX1 3NP, UK
The Rudolf Peierls Centre for Theoretical Physics, 1 Keble Road, Oxford OX1 3NP, UK.
J R Soc Interface. 2016 Feb;13(115):20150936. doi: 10.1098/rsif.2015.0936.
Biological flows over surfaces and interfaces can result in accumulation hotspots or depleted voids of microorganisms in natural environments. Apprehending the mechanisms that lead to such distributions is essential for understanding biofilm initiation. Using a systematic framework, we resolve the dynamics and statistics of swimming microbes within flowing films, considering the impact of confinement through steric and hydrodynamic interactions, flow and motility, along with Brownian and run-tumble fluctuations. Micro-swimmers can be peeled off the solid wall above a critical flow strength. However, the interplay of flow and fluctuations causes organisms to migrate back towards the wall above a secondary critical value. Hence, faster flows may not always be the most efficacious strategy to discourage biofilm initiation. Moreover, we find run-tumble dynamics commonly used by flagellated microbes to be an intrinsically more successful strategy to escape from boundaries than equivalent levels of enhanced Brownian noise in ciliated organisms.
生物在表面和界面上的流动会导致自然环境中微生物的聚集热点或耗尽的空洞。了解导致这种分布的机制对于理解生物膜的形成至关重要。我们使用一个系统框架,解析了流动薄膜中游泳微生物的动力学和统计学,考虑了空间位阻和流体动力学相互作用、流动和运动性以及布朗运动和随机转向波动所产生的限制影响。当流速超过临界强度时,微型游泳者会从固体壁上剥离。然而,流动和波动的相互作用会使生物体在超过第二个临界值时向壁面迁移。因此,更快的流速可能并不总是阻止生物膜形成的最有效策略。此外,我们发现鞭毛微生物常用的随机转向动力学在逃离边界方面本质上比纤毛生物体中同等水平的增强布朗噪声更成功。