Suppr超能文献

平流、扩散及通过网络进行的输送。

Advection, diffusion, and delivery over a network.

作者信息

Heaton Luke L M, López Eduardo, Maini Philip K, Fricker Mark D, Jones Nick S

机构信息

LSI DTC, Wolfson Building, University of Oxford, Parks Road, Oxford OX1 3QD, United Kingdom.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Aug;86(2 Pt 1):021905. doi: 10.1103/PhysRevE.86.021905. Epub 2012 Aug 7.

Abstract

Many biological, geophysical, and technological systems involve the transport of a resource over a network. In this paper, we present an efficient method for calculating the exact quantity of the resource in each part of an arbitrary network, where the resource is lost or delivered out of the network at a given rate, while being subject to advection and diffusion. The key conceptual step is to partition the resource into material that does or does not reach a node over a given time step. As an example application, we consider resource allocation within fungal networks, and analyze the spatial distribution of the resource that emerges as such networks grow over time. Fungal growth involves the expansion of fluid filled vessels, and such growth necessarily involves the movement of fluid. We develop a model of delivery in growing fungal networks, and find good empirical agreement between our model and experimental data gathered using radio-labeled tracers. Our results lead us to suggest that in foraging fungi, growth-induced mass flow is sufficient to account for long-distance transport, if the system is well insulated. We conclude that active transport mechanisms may only be required at the very end of the transport pathway, near the growing tips.

摘要

许多生物、地球物理和技术系统都涉及资源在网络中的传输。在本文中,我们提出了一种高效方法,用于计算任意网络各部分中资源的精确数量,其中资源以给定速率在网络中损失或输出,同时受到平流和扩散作用。关键的概念步骤是将资源划分为在给定时间步长内到达或未到达节点的物质。作为一个示例应用,我们考虑真菌网络内的资源分配,并分析随着此类网络随时间生长而出现的资源空间分布。真菌生长涉及充满液体的血管扩张,而这种生长必然涉及液体的流动。我们建立了生长中的真菌网络内资源输送模型,并发现我们的模型与使用放射性标记示踪剂收集的实验数据之间具有良好的经验一致性。我们的结果使我们认为,在觅食真菌中,如果系统绝缘良好,生长诱导的质量流足以解释长距离传输。我们得出结论,主动运输机制可能仅在传输路径的末端,即生长尖端附近才需要。

相似文献

1
Advection, diffusion, and delivery over a network.
Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Aug;86(2 Pt 1):021905. doi: 10.1103/PhysRevE.86.021905. Epub 2012 Aug 7.
2
Growth-induced mass flows in fungal networks.
Proc Biol Sci. 2010 Nov 7;277(1698):3265-74. doi: 10.1098/rspb.2010.0735. Epub 2010 Jun 10.
4
Imaging complex nutrient dynamics in mycelial networks.
J Microsc. 2008 Aug;231(2):317-31. doi: 10.1111/j.1365-2818.2008.02043.x.
5
Fungal network responses to grazing.
Fungal Genet Biol. 2010 Jun;47(6):522-30. doi: 10.1016/j.fgb.2010.01.006. Epub 2010 Feb 6.
6
Quantifying dynamic resource allocation illuminates foraging strategy in Phanerochaete velutina.
Fungal Genet Biol. 2008 Jul;45(7):1111-21. doi: 10.1016/j.fgb.2008.03.015. Epub 2008 Apr 6.
8
Biological solutions to transport network design.
Proc Biol Sci. 2007 Sep 22;274(1623):2307-15. doi: 10.1098/rspb.2007.0459.
9
The Mycelium as a Network.
Microbiol Spectr. 2017 May;5(3). doi: 10.1128/microbiolspec.FUNK-0033-2017.
10

引用本文的文献

1
Energy-delay analysis in advection-diffusion-based wireless body area networks.
PLoS One. 2025 Aug 29;20(8):e0330744. doi: 10.1371/journal.pone.0330744. eCollection 2025.
2
A Network Based Model for Predicting Spatial Progression of Metastasis.
Bull Math Biol. 2025 Apr 9;87(5):65. doi: 10.1007/s11538-025-01441-1.
3
Network traits predict ecological strategies in fungi.
ISME Commun. 2022 Jan 5;2(1):2. doi: 10.1038/s43705-021-00085-1.
4
A Graph-Based Framework for Multiscale Modeling of Physiological Transport.
Front Netw Physiol. 2022 Jan 12;1:802881. doi: 10.3389/fnetp.2021.802881. eCollection 2021.
6
Assortative mixing in spatially-extended networks.
Sci Rep. 2018 Sep 14;8(1):13825. doi: 10.1038/s41598-018-32160-4.
7
Comparing two classes of biological distribution systems using network analysis.
PLoS Comput Biol. 2018 Sep 7;14(9):e1006428. doi: 10.1371/journal.pcbi.1006428. eCollection 2018 Sep.
8
Flow rate of transport network controls uniform metabolite supply to tissue.
J R Soc Interface. 2018 May;15(142). doi: 10.1098/rsif.2018.0075.
9
Fluid flows shaping organism morphology.
Philos Trans R Soc Lond B Biol Sci. 2018 May 26;373(1747). doi: 10.1098/rstb.2017.0112.
10
ECG data compression using a neural network model based on multi-objective optimization.
PLoS One. 2017 Oct 3;12(10):e0182500. doi: 10.1371/journal.pone.0182500. eCollection 2017.

本文引用的文献

1
Scaling rules for diffusive drug delivery in tumor and normal tissues.
Proc Natl Acad Sci U S A. 2011 Feb 1;108(5):1799-803. doi: 10.1073/pnas.1018154108. Epub 2011 Jan 11.
2
Growth-induced mass flows in fungal networks.
Proc Biol Sci. 2010 Nov 7;277(1698):3265-74. doi: 10.1098/rspb.2010.0735. Epub 2010 Jun 10.
3
Multiscale modelling of fluid and drug transport in vascular tumours.
Bull Math Biol. 2010 Aug;72(6):1464-91. doi: 10.1007/s11538-010-9504-9. Epub 2010 Jan 23.
4
Structural adaptation and heterogeneity of normal and tumor microvascular networks.
PLoS Comput Biol. 2009 May;5(5):e1000394. doi: 10.1371/journal.pcbi.1000394. Epub 2009 May 29.
5
Angiogenesis and vascular remodelling in normal and cancerous tissues.
J Math Biol. 2009 Apr;58(4-5):689-721. doi: 10.1007/s00285-008-0213-z. Epub 2008 Oct 22.
6
Theoretical models of microvascular oxygen transport to tissue.
Microcirculation. 2008 Nov;15(8):795-811. doi: 10.1080/10739680801938289.
7
Biological solutions to transport network design.
Proc Biol Sci. 2007 Sep 22;274(1623):2307-15. doi: 10.1098/rspb.2007.0459.
8
Mathematical modeling of tumor-induced angiogenesis.
Annu Rev Biomed Eng. 2006;8:233-57. doi: 10.1146/annurev.bioeng.8.061505.095807.
9
Leaf hydraulics.
Annu Rev Plant Biol. 2006;57:361-81. doi: 10.1146/annurev.arplant.56.032604.144141.
10
Phloem: the long and the short of it.
Trends Plant Sci. 2006 Jan;11(1):26-32. doi: 10.1016/j.tplants.2005.11.009. Epub 2005 Dec 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验