Deepa Maheshvare M, Raha Soumyendu, Pal Debnath
Department of Computational and Data Sciences, Indian Institute of Science, Bangalore, India.
Front Netw Physiol. 2022 Jan 12;1:802881. doi: 10.3389/fnetp.2021.802881. eCollection 2021.
Trillions of chemical reactions occur in the human body every second, where the generated products are not only consumed locally but also transported to various locations in a systematic manner to sustain homeostasis. Current solutions to model these biological phenomena are restricted in computability and scalability due to the use of continuum approaches in which it is practically impossible to encapsulate the complexity of the physiological processes occurring at diverse scales. Here, we present a discrete modeling framework defined on an interacting graph that offers the flexibility to model multiscale systems by translating the physical space into a metamodel. We discretize the graph-based metamodel into functional units composed of well-mixed volumes with vascular and cellular subdomains; the operators defined over these volumes define the transport dynamics. We predict glucose drift governed by advective-dispersive transport in the vascular subdomains of an islet vasculature and cross-validate the flow and concentration fields with finite-element-based COMSOL simulations. Vascular and cellular subdomains are coupled to model the nutrient exchange occurring in response to the gradient arising out of reaction and perfusion dynamics. The application of our framework for modeling biologically relevant test systems shows how our approach can assimilate both multi-omics data from - studies and vascular topology from imaging studies for examining the structure-function relationship of complex vasculatures. The framework can advance simulation of whole-body networks at user-defined levels and is expected to find major use in personalized medicine and drug discovery.
人体每秒会发生数万亿次化学反应,所产生的产物不仅在局部被消耗,还会以系统的方式输送到各个部位以维持体内平衡。由于采用了连续介质方法,目前用于模拟这些生物现象的解决方案在可计算性和可扩展性方面受到限制,因为实际上不可能在这种方法中囊括不同尺度下发生的生理过程的复杂性。在此,我们提出了一个在相互作用图上定义的离散建模框架,该框架通过将物理空间转化为元模型,为多尺度系统建模提供了灵活性。我们将基于图的元模型离散化为由具有血管和细胞子域的充分混合体积组成的功能单元;在这些体积上定义的算子确定了输运动力学。我们预测了胰岛血管系统血管子域中由平流 - 扩散输运控制的葡萄糖漂移,并通过基于有限元的COMSOL模拟对流动和浓度场进行交叉验证。血管和细胞子域相互耦合以模拟因反应和灌注动力学产生的梯度而发生的营养物质交换。我们的框架在对生物相关测试系统进行建模中的应用表明了我们的方法如何能够整合来自研究的多组学数据和来自成像研究的血管拓扑结构,以研究复杂血管系统的结构 - 功能关系。该框架可以在用户定义的层面推进全身网络的模拟,有望在个性化医疗和药物发现中得到广泛应用。