Suppr超能文献

基于动态社区结构的序列和时间网络建模。

Modelling sequences and temporal networks with dynamic community structures.

机构信息

Department of Mathematical Sciences and Centre for Networks and Collective Behaviour, University of Bath, Claverton Down, Bath, BA2 7AY, UK.

ISI Foundation, Via Alassio 11/c, 10126, Torino, Italy.

出版信息

Nat Commun. 2017 Sep 19;8(1):582. doi: 10.1038/s41467-017-00148-9.

Abstract

In evolving complex systems such as air traffic and social organisations, collective effects emerge from their many components' dynamic interactions. While the dynamic interactions can be represented by temporal networks with nodes and links that change over time, they remain highly complex. It is therefore often necessary to use methods that extract the temporal networks' large-scale dynamic community structure. However, such methods are subject to overfitting or suffer from effects of arbitrary, a priori-imposed timescales, which should instead be extracted from data. Here we simultaneously address both problems and develop a principled data-driven method that determines relevant timescales and identifies patterns of dynamics that take place on networks, as well as shape the networks themselves. We base our method on an arbitrary-order Markov chain model with community structure, and develop a nonparametric Bayesian inference framework that identifies the simplest such model that can explain temporal interaction data.The description of temporal networks is usually simplified in terms of their dynamic community structures, whose identification however relies on a priori assumptions. Here the authors present a data-driven method that determines relevant timescales for the dynamics and uses it to identify communities.

摘要

在演化复杂系统(如空中交通和社会组织)中,集体效应源于其许多组件的动态交互。虽然这些动态交互可以用具有随时间变化的节点和链接的时间网络来表示,但它们仍然非常复杂。因此,通常需要使用提取时间网络大尺度动态社区结构的方法。然而,这些方法容易过度拟合或受到任意先验设定时间尺度的影响,而这些时间尺度应该从数据中提取。在这里,我们同时解决了这两个问题,并开发了一种基于原则的数据驱动方法,该方法确定相关的时间尺度,并识别发生在网络上的动态模式,以及塑造网络本身。我们的方法基于具有社区结构的任意阶马尔可夫链模型,并开发了一种非参数贝叶斯推断框架,该框架可以识别出最简单的模型,以解释时间交互数据。时间网络的描述通常简化为其动态社区结构,但其识别依赖于先验假设。在这里,作者提出了一种数据驱动的方法来确定动态的相关时间尺度,并使用它来识别社区。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a939/5605535/3732a0d01dfb/41467_2017_148_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验