Department of Biomathematics, UCLA Medical School, Los Angeles, CA, 90024, USA; Systemic Conservation Biology, Department of Biology, University of Göttingen, Göttingen, 37073, Germany.
J Anim Ecol. 2014 Jan;83(1):70-84. doi: 10.1111/1365-2656.12081. Epub 2013 May 21.
Environmental temperature has systematic effects on rates of species interactions, primarily through its influence on organismal physiology. We present a mechanistic model for the thermal response of consumer-resource interactions. We focus on how temperature affects species interactions via key traits - body velocity, detection distance, search rate and handling time - that underlie per capita consumption rate. The model is general because it applies to all foraging strategies: active-capture (both consumer and resource body velocity are important), sit-and-wait (resource velocity dominates) and grazing (consumer velocity dominates). The model predicts that temperature influences consumer-resource interactions primarily through its effects on body velocity (either of the consumer, resource or both), which determines how often consumers and resources encounter each other, and that asymmetries in the thermal responses of interacting species can introduce qualitative, not just quantitative, changes in consumer-resource dynamics. We illustrate this by showing how asymmetries in thermal responses determine equilibrium population densities in interacting consumer-resource pairs. We test for the existence of asymmetries in consumer-resource thermal responses by analysing an extensive database on thermal response curves of ecological traits for 309 species spanning 15 orders of magnitude in body size from terrestrial, marine and freshwater habitats. We find that asymmetries in consumer-resource thermal responses are likely to be a common occurrence. Overall, our study reveals the importance of asymmetric thermal responses in consumer-resource dynamics. In particular, we identify three general types of asymmetries: (i) different levels of performance of the response, (ii) different rates of response (e.g. activation energies) and (iii) different peak or optimal temperatures. Such asymmetries should occur more frequently as the climate changes and species' geographical distributions and phenologies are altered, such that previously noninteracting species come into contact. 6. By using characteristics of trophic interactions that are often well known, such as body size, foraging strategy, thermy and environmental temperature, our framework should allow more accurate predictions about the thermal dependence of consumer-resource interactions. Ultimately, integration of our theory into models of food web and ecosystem dynamics should be useful in understanding how natural systems will respond to current and future temperature change.
环境温度对物种相互作用的速率有系统影响,主要是通过其对生物生理的影响。我们提出了一个消费者-资源相互作用的热响应机制模型。我们关注的是温度如何通过关键特征(个体消费率的基础)影响物种相互作用,这些特征包括身体速度、检测距离、搜索率和处理时间。该模型是通用的,因为它适用于所有觅食策略:主动捕获(消费者和资源的身体速度都很重要)、坐等(资源速度占主导地位)和放牧(消费者速度占主导地位)。该模型预测,温度主要通过其对身体速度(消费者、资源或两者)的影响来影响消费者-资源相互作用,这决定了消费者和资源相互遭遇的频率,而相互作用的物种对温度的响应的不对称性可能会对消费者-资源动态产生定性的,而不仅仅是定量的变化。我们通过展示热响应不对称性如何决定相互作用的消费者-资源对的平衡种群密度来说明这一点。我们通过分析一个关于生态特征热响应曲线的广泛数据库来检验消费者-资源对热响应的不对称性,该数据库涵盖了来自陆地、海洋和淡水栖息地的 15 个体型大小阶序的 309 个物种。我们发现,消费者-资源热响应的不对称性可能是一个常见的现象。总的来说,我们的研究揭示了不对称热响应在消费者-资源动态中的重要性。特别是,我们确定了三种一般类型的不对称性:(i)响应性能的不同水平,(ii)不同的响应速率(例如,激活能)和(iii)不同的峰值或最佳温度。随着气候变化和物种地理分布和物候期的改变,使以前不相互作用的物种接触,这种不对称性应该更频繁地发生。6. 通过使用通常熟知的营养相互作用的特征,如体型、觅食策略、热和环境温度,我们的框架应该能够更准确地预测消费者-资源相互作用的热依赖性。最终,将我们的理论整合到食物网和生态系统动态模型中,应该有助于理解自然系统将如何对当前和未来的温度变化做出反应。