Suppr超能文献

背景活动存在时振荡神经反应的功率和相位特性。

Power and phase properties of oscillatory neural responses in the presence of background activity.

作者信息

Ding Nai, Simon Jonathan Z

机构信息

Department of Electrical and Computer Engineering, University of Maryland, College Park, MD 20742, USA.

出版信息

J Comput Neurosci. 2013 Apr;34(2):337-43. doi: 10.1007/s10827-012-0424-6. Epub 2012 Sep 25.

Abstract

Natural sensory inputs, such as speech and music, are often rhythmic. Recent studies have consistently demonstrated that these rhythmic stimuli cause the phase of oscillatory, i.e. rhythmic, neural activity, recorded as local field potential (LFP), electroencephalography (EEG) or magnetoencephalography (MEG), to synchronize with the stimulus. This phase synchronization, when not accompanied by any increase of response power, has been hypothesized to be the result of phase resetting of ongoing, spontaneous, neural oscillations measurable by LFP, EEG, or MEG. In this article, however, we argue that this same phenomenon can be easily explained without any phase resetting, and where the stimulus-synchronized activity is generated independently of background neural oscillations. It is demonstrated with a simple (but general) stochastic model that, purely due to statistical properties, phase synchronization, as measured by 'inter-trial phase coherence', is much more sensitive to stimulus-synchronized neural activity than is power. These results question the usefulness of analyzing the power and phase of stimulus-synchronized activity as separate and complementary measures; particularly in the case of attempting to demonstrate whether stimulus-synchronized neural activity is generated by phase resetting of ongoing neural oscillations.

摘要

自然感官输入,如语音和音乐,通常具有节奏性。最近的研究一致表明,这些节奏性刺激会使以局部场电位(LFP)、脑电图(EEG)或脑磁图(MEG)记录的振荡性(即节奏性)神经活动的相位与刺激同步。当这种相位同步不伴随着任何反应功率增加时,有人推测这是由LFP、EEG或MEG可测量的正在进行的自发神经振荡的相位重置导致的。然而,在本文中,我们认为这种相同的现象无需任何相位重置就能轻松解释,并且刺激同步活动是独立于背景神经振荡产生的。通过一个简单(但通用)的随机模型表明,纯粹由于统计特性,用“试验间相位相干性”测量的相位同步对刺激同步神经活动的敏感度远高于功率。这些结果质疑了将刺激同步活动的功率和相位作为单独且互补的测量方法的有用性;特别是在试图证明刺激同步神经活动是否由正在进行的神经振荡的相位重置产生的情况下。

相似文献

1
Power and phase properties of oscillatory neural responses in the presence of background activity.
J Comput Neurosci. 2013 Apr;34(2):337-43. doi: 10.1007/s10827-012-0424-6. Epub 2012 Sep 25.
2
Sustained neural rhythms reveal endogenous oscillations supporting speech perception.
PLoS Biol. 2021 Feb 26;19(2):e3001142. doi: 10.1371/journal.pbio.3001142. eCollection 2021 Feb.
3
Synchronization of β and γ oscillations in the somatosensory evoked neuromagnetic steady-state response.
Exp Neurol. 2013 Jul;245:40-51. doi: 10.1016/j.expneurol.2012.08.019. Epub 2012 Aug 27.
4
Imaging of neural oscillations with embedded inferential and group prevalence statistics.
PLoS Comput Biol. 2018 Feb 6;14(2):e1005990. doi: 10.1371/journal.pcbi.1005990. eCollection 2018 Feb.
5
Modulation of spectral power and of phase resetting of EEG contributes differentially to the generation of auditory event-related potentials.
Neuroimage. 2006 Apr 15;30(3):909-16. doi: 10.1016/j.neuroimage.2005.10.036. Epub 2006 Jan 11.
6
Auditory event-related responses are generated independently of ongoing brain activity.
Neuroimage. 2005 Feb 15;24(4):961-8. doi: 10.1016/j.neuroimage.2004.10.020. Epub 2004 Dec 9.
8
Neural Oscillations and Synchrony in Brain Dysfunction and Neuropsychiatric Disorders: It's About Time.
JAMA Psychiatry. 2015 Aug;72(8):840-4. doi: 10.1001/jamapsychiatry.2015.0483.
9
Role of neuronal synchrony in the generation of evoked EEG/MEG responses.
J Neurophysiol. 2010 Dec;104(6):3557-67. doi: 10.1152/jn.00138.2010. Epub 2010 Oct 13.
10

引用本文的文献

1
"What" and "When" Predictions Jointly Modulate Speech Processing.
J Neurosci. 2025 May 14;45(20):e1049242025. doi: 10.1523/JNEUROSCI.1049-24.2025.
2
Structural and sequential regularities modulate phrase-rate neural tracking.
Sci Rep. 2024 Jul 18;14(1):16603. doi: 10.1038/s41598-024-67153-z.
3
Contribution of inter-trial phase coherence at theta, alpha, and beta frequencies in auditory change detection.
Front Neurosci. 2023 Nov 9;17:1224479. doi: 10.3389/fnins.2023.1224479. eCollection 2023.
4
"What" and "when" predictions modulate auditory processing in a mutually congruent manner.
Front Neurosci. 2023 Sep 15;17:1180066. doi: 10.3389/fnins.2023.1180066. eCollection 2023.
5
Editorial: Peak frequencies in neural oscillatory activity and their connection to perception and cognition.
Front Psychol. 2023 Jun 23;14:1234955. doi: 10.3389/fpsyg.2023.1234955. eCollection 2023.
6
Impaired phase synchronization of motor-evoked potentials reflects the degree of motor dysfunction in the lesioned human brain.
Hum Brain Mapp. 2022 Jun 1;43(8):2668-2682. doi: 10.1002/hbm.25812. Epub 2022 Feb 24.
7
Oscillatory visual mechanisms revealed by random temporal sampling.
Sci Rep. 2021 Oct 29;11(1):21309. doi: 10.1038/s41598-021-00685-w.
8
θ-Band Cortical Tracking of the Speech Envelope Shows the Linear Phase Property.
eNeuro. 2021 Aug 25;8(4). doi: 10.1523/ENEURO.0058-21.2021. Print 2021 Jul-Aug.
9
Neural oscillations are a start toward understanding brain activity rather than the end.
PLoS Biol. 2021 May 4;19(5):e3001234. doi: 10.1371/journal.pbio.3001234. eCollection 2021 May.
10
Probabilistic, entropy-maximizing control of large-scale neural synchronization.
PLoS One. 2021 Apr 30;16(4):e0249317. doi: 10.1371/journal.pone.0249317. eCollection 2021.

本文引用的文献

1
Discrimination of speech stimuli based on neuronal response phase patterns depends on acoustics but not comprehension.
J Neurophysiol. 2010 Nov;104(5):2500-11. doi: 10.1152/jn.00251.2010. Epub 2010 May 19.
2
Spike-phase coding boosts and stabilizes information carried by spatial and temporal spike patterns.
Neuron. 2009 Feb 26;61(4):597-608. doi: 10.1016/j.neuron.2009.01.008.
3
Low-frequency neuronal oscillations as instruments of sensory selection.
Trends Neurosci. 2009 Jan;32(1):9-18. doi: 10.1016/j.tins.2008.09.012. Epub 2008 Nov 13.
4
Entrainment of neuronal oscillations as a mechanism of attentional selection.
Science. 2008 Apr 4;320(5872):110-3. doi: 10.1126/science.1154735.
5
Phase patterns of neuronal responses reliably discriminate speech in human auditory cortex.
Neuron. 2007 Jun 21;54(6):1001-10. doi: 10.1016/j.neuron.2007.06.004.
6
Are event-related potential components generated by phase resetting of brain oscillations? A critical discussion.
Neuroscience. 2007 Jun 8;146(4):1435-44. doi: 10.1016/j.neuroscience.2007.03.014. Epub 2007 Apr 24.
7
Detection of synchronized oscillations in the electroencephalogram: an evaluation of methods.
Psychophysiology. 2004 Nov;41(6):822-32. doi: 10.1111/j.1469-8986.2004.00239.x.
8
Neural dynamics and the fundamental mechanisms of event-related brain potentials.
Cereb Cortex. 2004 May;14(5):476-83. doi: 10.1093/cercor/bhh009. Epub 2004 Mar 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验