McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montréal, Québec, Canada.
Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich Heine Universität, Düsseldorf, Germany.
PLoS Comput Biol. 2018 Feb 6;14(2):e1005990. doi: 10.1371/journal.pcbi.1005990. eCollection 2018 Feb.
Magnetoencephalography and electroencephalography (MEG, EEG) are essential techniques for studying distributed signal dynamics in the human brain. In particular, the functional role of neural oscillations remains to be clarified. For that reason, imaging methods need to identify distinct brain regions that concurrently generate oscillatory activity, with adequate separation in space and time. Yet, spatial smearing and inhomogeneous signal-to-noise are challenging factors to source reconstruction from external sensor data. The detection of weak sources in the presence of stronger regional activity nearby is a typical complication of MEG/EEG source imaging. We propose a novel, hypothesis-driven source reconstruction approach to address these methodological challenges. The imaging with embedded statistics (iES) method is a subspace scanning technique that constrains the mapping problem to the actual experimental design. A major benefit is that, regardless of signal strength, the contributions from all oscillatory sources, which activity is consistent with the tested hypothesis, are equalized in the statistical maps produced. We present extensive evaluations of iES on group MEG data, for mapping 1) induced oscillations using experimental contrasts, 2) ongoing narrow-band oscillations in the resting-state, 3) co-modulation of brain-wide oscillatory power with a seed region, and 4) co-modulation of oscillatory power with peripheral signals (pupil dilation). Along the way, we demonstrate several advantages of iES over standard source imaging approaches. These include the detection of oscillatory coupling without rejection of zero-phase coupling, and detection of ongoing oscillations in deeper brain regions, where signal-to-noise conditions are unfavorable. We also show that iES provides a separate evaluation of oscillatory synchronization and desynchronization in experimental contrasts, which has important statistical advantages. The flexibility of iES allows it to be adjusted to many experimental questions in systems neuroscience.
脑磁图和脑电图(MEG、EEG)是研究人类大脑中分布式信号动力学的重要技术。特别是,神经振荡的功能作用仍有待阐明。为此,成像方法需要识别同时产生振荡活动的不同脑区,在空间和时间上要有足够的分离。然而,空间模糊和信号噪声不均匀是从外部传感器数据进行源重建的挑战性因素。在附近存在更强区域活动的情况下检测弱源是 MEG/EEG 源成像的典型并发症。我们提出了一种新颖的、基于假设的源重建方法来解决这些方法学挑战。嵌入统计信息的成像(iES)方法是一种子空间扫描技术,将映射问题约束到实际的实验设计中。一个主要的好处是,无论信号强度如何,与测试假设一致的所有振荡源的贡献都在生成的统计图谱中均衡。我们在组 MEG 数据上对 iES 进行了广泛的评估,用于映射 1)使用实验对比的诱导振荡,2)静息状态下的窄带振荡,3)脑广泛振荡功率与种子区的共调制,以及 4)与外周信号(瞳孔扩张)的共调制。在此过程中,我们展示了 iES 相对于标准源成像方法的几个优势。这些优势包括在不拒绝零相位耦合的情况下检测振荡耦合,以及在信号噪声条件不利的更深脑区检测到持续的振荡。我们还表明,iES 提供了实验对比中振荡同步和去同步的单独评估,这具有重要的统计优势。iES 的灵活性使其能够适应系统神经科学中的许多实验问题。