Centre interdisciplinaire de recherche sur le cerveau et l'apprentissage (CIRCA), Département de psychologie, Université de Montréal, Montreal, Canada.
Centre de recherche, Institut Universitaire de Gériatrie de Montréal, Montreal, Canada.
Sci Rep. 2021 Oct 29;11(1):21309. doi: 10.1038/s41598-021-00685-w.
It is increasingly apparent that functionally significant neural activity is oscillatory in nature. Demonstrating the implications of this mode of operation for perceptual/cognitive function remains somewhat elusive. This report describes the technique of random temporal sampling for the investigation of visual oscillatory mechanisms. The technique is applied in visual recognition experiments using different stimulus classes (words, familiar objects, novel objects, and faces). Classification images reveal variations of perceptual effectiveness according to the temporal features of stimulus visibility. These classification images are also decomposed into their power and phase spectra. Stimulus classes lead to distinct outcomes and the power spectra of classification images are highly generalizable across individuals. Moreover, stimulus class can be reliably decoded from the power spectrum of individual classification images. These findings and other aspects of the results validate random temporal sampling as a promising new method to study oscillatory visual mechanisms.
越来越明显的是,功能上重要的神经活动本质上是振荡的。证明这种操作模式对感知/认知功能的影响仍然有些难以捉摸。本报告描述了用于研究视觉振荡机制的随机时间采样技术。该技术应用于不同刺激类别的视觉识别实验中(单词、熟悉的物体、新颖的物体和面孔)。分类图像根据刺激可见性的时间特征显示出感知效果的变化。这些分类图像也被分解为它们的功率和相位谱。刺激类导致不同的结果,分类图像的功率谱在个体之间具有高度的可推广性。此外,刺激类可以从个体分类图像的功率谱中可靠地解码。这些发现和结果的其他方面验证了随机时间采样作为一种研究振荡视觉机制的有前途的新方法。