IEEE J Biomed Health Inform. 2013 Jan;17(1):71-81. doi: 10.1109/TITB.2012.2219876. Epub 2012 Sep 19.
Data-driven techniques have recently drawn significant interest in the predictive modeling of subcutaneous (s.c.) glucose concentration in type 1 diabetes. In this study, the s.c. glucose prediction is treated as a multivariate regression problem, which is addressed using support vector regression (SVR). The proposed method is based on variables concerning: (i) the s.c. glucose profile, (ii) the plasma insulin concentration, (iii) the appearance of meal-derived glucose in the systemic circulation, and (iv) the energy expenditure during physical activities. Six cases corresponding to different combinations of the aforementioned variables are used to investigate the influence of the input on the daily glucose prediction. The proposed method is evaluated using a dataset of 27 patients in free-living conditions. 10-fold cross validation is applied to each dataset individually to both optimize and test the SVR model. In the case where all the input variables are considered, the average prediction errors are 5.21, 6.03, 7.14 and 7.62 mg/dl for 15, 30, 60 and 120 min prediction horizons, respectively. The results clearly indicate that the availability of multivariable data and their effective combination can significantly increase the accuracy of both short-term and long-term predictions.
数据驱动技术最近在 1 型糖尿病患者皮下(s.c.)血糖浓度的预测建模中引起了极大的关注。在本研究中,s.c.血糖预测被视为一个多元回归问题,使用支持向量回归(SVR)来解决。该方法基于以下变量:(i)s.c.血糖谱,(ii)血浆胰岛素浓度,(iii)进餐引起的葡萄糖出现在体循环中,以及(iv)体力活动期间的能量消耗。使用 6 个案例,分别对应于上述变量的不同组合,以研究输入变量对日常血糖预测的影响。该方法使用 27 名自由生活条件下的患者的数据集进行评估。对每个数据集分别进行 10 折交叉验证,以优化和测试 SVR 模型。在考虑所有输入变量的情况下,15、30、60 和 120 分钟预测时间的平均预测误差分别为 5.21、6.03、7.14 和 7.62mg/dl。结果清楚地表明,多变量数据的可用性及其有效组合可以显著提高短期和长期预测的准确性。