Georga Eleni I, Protopappas Vasilios C, Polyzos Demosthenes, Fotiadis Dimitrios I
Department of Materials Science and Engineering, University of Ioannina, Ioannina, GR 45110 Greece.
Annu Int Conf IEEE Eng Med Biol Soc. 2012;2012:2889-92. doi: 10.1109/EMBC.2012.6346567.
In this study, an individualized predictive model of the subcutaneous glucose concentration in type 1 diabetes is presented, which relies on the Random Forests regression technique. A multivariate dataset is utilized concerning the s.c. glucose profile, the plasma insulin concentration, the intestinal absorption of meal-derived glucose and the daily energy expenditure. In an attempt to capture daily rhythms in glucose metabolism, we also introduce a time feature in the predictive analysis. The dataset comes from the continuous multi-day recordings of 27 type 1 patients in free-living conditions. Evaluating the performance of the proposed method by 10-fold cross validation, an average RMSE of 6.60, 8.15, 9.25 and 10.83 mg/dl for 15, 30, 60 and 120 min prediction horizons, respectively, was attained.
在本研究中,提出了一种1型糖尿病皮下葡萄糖浓度的个性化预测模型,该模型依赖于随机森林回归技术。使用了一个多变量数据集,该数据集涉及皮下葡萄糖曲线、血浆胰岛素浓度、膳食来源葡萄糖的肠道吸收以及每日能量消耗。为了捕捉葡萄糖代谢的每日节律,我们还在预测分析中引入了一个时间特征。该数据集来自27名1型患者在自由生活条件下的连续多日记录。通过10倍交叉验证评估所提出方法的性能,对于15、30、60和120分钟的预测期,平均均方根误差分别为6.60、8.15、9.25和10.83mg/dl。