Center for Analytical Chemistry, Department for Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Vienna, Konrad-Lorenz-Str 20, 3430 Tulln, Austria.
Anal Bioanal Chem. 2013 Jan;405(1):27-33. doi: 10.1007/s00216-012-6375-y. Epub 2012 Sep 26.
Metabolomics has emerged as the latest of the so-called "omics" disciplines and has great potential to provide deeper understanding of fundamental biochemical processes at the biological system level. Among recent technological developments, LC-HRMS enables determination of hundreds to thousands of metabolites over a wide range of concentrations and has developed into one of the most powerful techniques in non-targeted metabolomics. The analysis of mixtures of in-vivo-stable isotopic-labeled samples or reference substances with un-labeled samples leads to specific LC-MS data patterns which can be systematically exploited in practically all data-processing steps. This includes recognition of true metabolite-derived analytical features in highly complex LC-MS data and characterization of the global biochemical composition of biological samples. In addition, stable-isotopic labeling can be used for more accurate quantification (via internal standardization) and identification of compounds in different organisms.
代谢组学已成为最新的所谓“组学”学科之一,具有深入了解生物系统水平基本生化过程的巨大潜力。在最近的技术发展中,LC-HRMS 能够在广泛的浓度范围内确定数百到数千种代谢物,已发展成为非靶向代谢组学中最强大的技术之一。对体内稳定同位素标记的样品或参比物质与未标记样品的混合物进行分析,会产生特定的 LC-MS 数据模式,这些模式可在几乎所有的数据处理步骤中进行系统利用。这包括在高度复杂的 LC-MS 数据中识别真正来源于代谢物的分析特征,以及对生物样品的全球生物化学组成进行特征描述。此外,稳定同位素标记可用于更准确的定量(通过内标法)和不同生物体中化合物的鉴定。