Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695-7905, USA.
Proc Natl Acad Sci U S A. 2012 Oct 9;109(41):16702-7. doi: 10.1073/pnas.1210904109. Epub 2012 Sep 25.
Thermoacidophilic archaea are found in heavy metal-rich environments, and, in some cases, these microorganisms are causative agents of metal mobilization through cellular processes related to their bioenergetics. Given the nature of their habitats, these microorganisms must deal with the potentially toxic effect of heavy metals. Here, we show that two thermoacidophilic Metallosphaera species with nearly identical (99.99%) genomes differed significantly in their sensitivity and reactivity to uranium (U). Metallosphaera prunae, isolated from a smoldering heap on a uranium mine in Thüringen, Germany, could be viewed as a "spontaneous mutant" of Metallosphaera sedula, an isolate from Pisciarelli Solfatara near Naples. Metallosphaera prunae tolerated triuranium octaoxide (U(3)O(8)) and soluble uranium [U(VI)] to a much greater extent than M. sedula. Within 15 min following exposure to "U(VI) shock," M. sedula, and not M. prunae, exhibited transcriptomic features associated with severe stress response. Furthermore, within 15 min post-U(VI) shock, M. prunae, and not M. sedula, showed evidence of substantial degradation of cellular RNA, suggesting that transcriptional and translational processes were aborted as a dynamic mechanism for resisting U toxicity; by 60 min post-U(VI) shock, RNA integrity in M. prunae recovered, and known modes for heavy metal resistance were activated. In addition, M. sedula rapidly oxidized solid U(3)O(8) to soluble U(VI) for bioenergetic purposes, a chemolithoautotrophic feature not previously reported. M. prunae, however, did not solubilize solid U(3)O(8) to any significant extent, thereby not exacerbating U(VI) toxicity. These results point to uranium extremophily as an adaptive, rather than intrinsic, feature for Metallosphaera species, driven by environmental factors.
嗜热嗜酸古菌存在于富含重金属的环境中,在某些情况下,这些微生物通过与生物能量学相关的细胞过程成为金属迁移的原因。鉴于其栖息地的性质,这些微生物必须应对重金属的潜在毒性影响。在这里,我们表明两种基因组几乎相同(99.99%)的嗜热嗜酸金属球菌属物种对铀(U)的敏感性和反应性有显著差异。从德国图林根州一个铀矿的闷烧堆中分离出来的 Metallosphaera prunae 可以被视为 Metallosphaera sedula 的“自发突变体”,后者是从那不勒斯附近的皮斯卡雷利硫黄泉分离出来的。Metallosphaera prunae 能够耐受三铀八氧化物(U3O8)和可溶性铀[U(VI)],比 Metallosphaera sedula 耐受程度要高得多。暴露于“U(VI)冲击”后 15 分钟内,M. sedula 而非 M. prunae 表现出与严重应激反应相关的转录组特征。此外,在 U(VI)冲击后 15 分钟内,M. prunae 而非 M. sedula 表现出细胞 RNA 大量降解的证据,表明转录和翻译过程被中止,作为抵抗 U 毒性的动态机制;在 U(VI)冲击后 60 分钟,M. prunae 的 RNA 完整性恢复,并且已知的重金属抗性模式被激活。此外,M. sedula 为了生物能量目的,迅速将固态 U3O8 氧化为可溶性 U(VI),这是以前未曾报道过的化能自养特征。然而,M. prunae 并没有将固态 U3O8 溶解到任何显著程度,因此不会加剧 U(VI)毒性。这些结果表明,对于 Metallosphaera 物种来说,铀的极端嗜性是一种适应性特征,而不是内在特征,这是由环境因素驱动的。