Biometrics Research Center, Department of Computing, The Hong Kong Polytechnic University, Kowloon, Hong Kong.
Sensors (Basel). 2012;12(7):8691-709. doi: 10.3390/s120708691. Epub 2012 Jun 26.
Human hand back skin texture (HBST) is often consistent for a person and distinctive from person to person. In this paper, we study the HBST pattern recognition problem with applications to personal identification and gender classification. A specially designed system is developed to capture HBST images, and an HBST image database was established, which consists of 1,920 images from 80 persons (160 hands). An efficient texton learning based method is then presented to classify the HBST patterns. First, textons are learned in the space of filter bank responses from a set of training images using the l(1) -minimization based sparse representation (SR) technique. Then, under the SR framework, we represent the feature vector at each pixel over the learned dictionary to construct a representation coefficient histogram. Finally, the coefficient histogram is used as skin texture feature for classification. Experiments on personal identification and gender classification are performed by using the established HBST database. The results show that HBST can be used to assist human identification and gender classification.
人手背部皮肤纹理(HBST)通常对一个人来说是一致的,并且人与人之间有明显的区别。在本文中,我们研究了 HBST 模式识别问题,该问题应用于个人识别和性别分类。设计了一个专门的系统来获取 HBST 图像,并建立了一个 HBST 图像数据库,其中包含 80 个人(160 只手)的 1920 张图像。然后提出了一种有效的基于纹理元学习的方法来对 HBST 模式进行分类。首先,使用基于 l(1)最小化的稀疏表示(SR)技术,从一组训练图像的滤波器组响应空间中学习纹理元。然后,在 SR 框架下,我们使用所学习的字典在每个像素上表示特征向量,以构造表示系数直方图。最后,将系数直方图用作分类的皮肤纹理特征。使用建立的 HBST 数据库进行了个人识别和性别分类实验。结果表明,HBST 可用于辅助人类识别和性别分类。