Nawarathna Ruwan, Oh JungHwan, Muthukudage Jayantha, Tavanapong Wallapak, Wong Johnny, de Groen Piet C, Tang Shou Jiang
Department of Computer Science and Engineering, University of North Texas, Denton, TX 76203, U.S.A.
Computer Science Department, Iowa State University, Ames, IA 50011, U.S.A.
Neurocomputing (Amst). 2014 Nov 20;144:70-91. doi: 10.1016/j.neucom.2014.02.064.
Finding mucosal abnormalities (e.g., erythema, blood, ulcer, erosion, and polyp) is one of the most essential tasks during endoscopy video review. Since these abnormalities typically appear in a small number of frames (around 5% of the total frame number), automated detection of frames with an abnormality can save physician's time significantly. In this paper, we propose a new multi-texture analysis method that effectively discerns images showing mucosal abnormalities from the ones without any abnormality since most abnormalities in endoscopy images have textures that are clearly distinguishable from normal textures using an advanced image texture analysis method. The method uses a "texton histogram" of an image block as features. The histogram captures the distribution of different "textons" representing various textures in an endoscopy image. The textons are representative response vectors of an application of a combination of Leung and Malik (LM) filter bank (i.e., a set of image filters) and a set of Local Binary Patterns on the image. Our experimental results indicate that the proposed method achieves 92% recall and 91.8% specificity on wireless capsule endoscopy (WCE) images and 91% recall and 90.8% specificity on colonoscopy images.
在内窥镜视频检查过程中,发现黏膜异常(如红斑、出血、溃疡、糜烂和息肉)是最重要的任务之一。由于这些异常通常仅出现在少数帧中(约占总帧数的5%),因此自动检测出有异常的帧可以显著节省医生的时间。在本文中,我们提出了一种新的多纹理分析方法,该方法可以有效地从无异常的图像中辨别出显示黏膜异常的图像,因为内窥镜图像中的大多数异常都具有可通过先进的图像纹理分析方法与正常纹理明显区分的纹理。该方法使用图像块的“纹理基元直方图”作为特征。直方图捕捉了代表内窥镜图像中各种纹理的不同“纹理基元 ”的分布。纹理基元是在图像上应用梁和马利克(LM)滤波器组(即一组图像滤波器)和一组局部二值模式的组合后的代表性响应向量。我们的实验结果表明,该方法在无线胶囊内窥镜(WCE)图像上的召回率达到92%,特异性达到91.8%;在结肠镜图像上的召回率达到91%,特异性达到90.8%。