Physiology/Biomedical Engineering, Université de Montréal, Montreal, Quebec, Canada.
Hum Brain Mapp. 2013 May;34(5):1053-69. doi: 10.1002/hbm.21495. Epub 2012 Jan 16.
Calibrated MRI techniques use the changes in cerebral blood flow (CBF) and blood oxygenation level-dependent (BOLD) signal evoked by a respiratory manipulation to extrapolate the total BOLD signal attributable to deoxyhemoglobin at rest (M). This parameter can then be used to estimate changes in the cerebral metabolic rate of oxygen consumption (CMRO(2)) based on task-induced BOLD and CBF signals. Different approaches have been described previously, including addition of inspired CO(2) (hypercapnia) or supplemental O(2) (hyperoxia). We present here a generalized BOLD signal model that reduces under appropriate conditions to previous models derived for hypercapnia or hyperoxia alone, and is suitable for use during hybrid breathing manipulations including simultaneous hypercapnia and hyperoxia. This new approach yields robust and accurate M maps, in turn allowing more reliable estimation of CMRO(2) changes evoked during a visual task. The generalized model is valid for arbitrary flow changes during hyperoxia, thus benefiting from the larger total oxygenation changes produced by increased blood O(2) content from hyperoxia combined with increases in flow from hypercapnia. This in turn reduces the degree of extrapolation required to estimate M. The new procedure yielded M estimates that were generally higher (7.6 ± 2.6) than those obtained through hypercapnia (5.6 ± 1.8) or hyperoxia alone (4.5 ± 1.5) in visual areas. These M values and their spatial distribution represent a more accurate and robust depiction of the underlying distribution of tissue deoxyhemoglobin at rest, resulting in more accurate estimates of evoked CMRO(2) changes.
校准的 MRI 技术使用呼吸操作引起的脑血流 (CBF) 和血氧水平依赖 (BOLD) 信号的变化来推断静息时脱氧血红蛋白引起的总 BOLD 信号 (M)。然后,该参数可用于根据任务诱导的 BOLD 和 CBF 信号来估计脑氧消耗代谢率 (CMRO(2)) 的变化。以前已经描述了不同的方法,包括吸入 CO(2)(高碳酸血症)或补充 O(2)(高氧血症)。我们在这里提出了一个广义的 BOLD 信号模型,在适当的条件下,该模型可以简化为以前为高碳酸血症或高氧血症单独推导的模型,并且适用于包括同时高碳酸血症和高氧血症的混合呼吸操作。这种新方法产生了稳健且准确的 M 图谱,从而可以更可靠地估计视觉任务期间引起的 CMRO(2)变化。广义模型在高氧血症期间适用于任意流量变化,从而受益于高氧血症增加的血液 O(2)含量和高碳酸血症增加的流量引起的更大的总氧合变化。这反过来又减少了估计 M 所需的外推程度。新方法产生的 M 估计值通常高于通过高碳酸血症(5.6 ± 1.8)或单独高氧血症(4.5 ± 1.5)获得的值(7.6 ± 2.6),在视觉区域。这些 M 值及其空间分布代表了更准确和稳健的静息组织脱氧血红蛋白分布的描述,从而更准确地估计了诱发的 CMRO(2)变化。