CNISM - Department of Physics, Politecnico di Milano, Piazza Leonardo Da Vinci 32, 20133 Milan, Italy.
Nano Lett. 2012 Nov 14;12(11):5791-6. doi: 10.1021/nl303099c. Epub 2012 Oct 3.
We demonstrate the ability to trap, levitate, and orient single anisometric nanoscale objects with high angular precision in a fluid. An electrostatic fluidic trap confines a spherical object at a spatial location defined by the minimum of the electrostatic system free energy. For an anisometric object and a potential well lacking angular symmetry, the system free energy can further strongly depend on the object's orientation in the trap. Engineering the morphology of the trap thus enables precise spatial and angular confinement of a single levitating nano-object, and the process can be massively parallelized. Since the physics of the trap depends strongly on the surface charge of the object, the method is insensitive to the object's dielectric function. Furthermore, levitation of the assembled objects renders them amenable to individual manipulation using externally applied optical, electrical, or hydrodynamic fields, raising prospects for reconfigurable chip-based nano-object assemblies.
我们展示了在流体中捕获、悬浮和定向具有高角精度的单个各向异性纳米物体的能力。静电流体陷阱将球形物体限制在静电系统自由能最小的空间位置。对于各向异性物体和缺乏角对称的势阱,系统自由能可以进一步强烈依赖于物体在陷阱中的取向。因此,通过设计陷阱的形态,可以实现对单个悬浮纳米物体的精确空间和角约束,并且该过程可以大规模并行化。由于陷阱的物理性质强烈依赖于物体的表面电荷,因此该方法对物体的介电常数不敏感。此外,组装物体的悬浮使它们能够使用外部施加的光学、电气或流体动力场进行单独操纵,为可重构的基于芯片的纳米物体组装带来了前景。