Suppr超能文献

在无混杂研究中具有二分类结局的二项处理因果效应的稳健估计。

Robust estimation of causal effects of binary treatments in unconfounded studies with dichotomous outcomes.

机构信息

Department of Biostatistics, Brown University, 121 S. Main St., Providence, RI 02912, USA.

出版信息

Stat Med. 2013 May 20;32(11):1795-814. doi: 10.1002/sim.5627. Epub 2012 Sep 28.

Abstract

The estimation of causal effects has been the subject of extensive research. In unconfounded studies with a dichotomous outcome, Y, Cangul, Chretien, Gutman and Rubin (2009) demonstrated that logistic regression for a scalar continuous covariate X is generally statistically invalid for testing null treatment effects when the distributions of X in the treated and control populations differ and the logistic model for Y given X is misspecified. In addition, they showed that an approximately valid statistical test can be generally obtained by discretizing X followed by regression adjustment within each interval defined by the discretized X. This paper extends the work of Cangul et al. 2009 in three major directions. First, we consider additional estimation procedures, including a new one that is based on two independent splines and multiple imputation; second, we consider additional distributional factors; and third, we examine the performance of the procedures when the treatment effect is non-null. Of all the methods considered and in most of the experimental conditions that were examined, our proposed new methodology appears to work best in terms of point and interval estimation.

摘要

因果效应的估计一直是广泛研究的主题。在二分类结局的非混杂研究中,Cangul、Chretien、Gutman 和 Rubin(2009)表明,当处理组和对照组中 X 的分布不同且给定 X 的 Y 的逻辑回归模型存在误定时,对于测试零处理效应,标量连续协变量 X 的逻辑回归通常在统计学上是无效的。此外,他们表明,通过对 X 进行离散化,然后在由离散化 X 定义的每个区间内进行回归调整,可以得到一个大致有效的统计检验。本文在三个主要方向上扩展了 Cangul 等人的工作。首先,我们考虑了其他的估计程序,包括一种新的基于两个独立样条和多重插补的程序;其次,我们考虑了其他分布因素;最后,我们检查了在处理效果不为零时这些程序的性能。在所考虑的所有方法中,以及在所检查的大多数实验条件下,我们提出的新方法在点估计和区间估计方面似乎表现最好。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验