Suppr超能文献

采用倾向评分匹配后多重插补缺失的对照二分类潜在结局估计调整风险差异。

Estimating adjusted risk differences by multiply-imputing missing control binary potential outcomes following propensity score-matching.

机构信息

ICES, Toronto, Ontario, Canada.

Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, Ontario, Canada.

出版信息

Stat Med. 2021 Nov 10;40(25):5565-5586. doi: 10.1002/sim.9141. Epub 2021 Aug 10.

Abstract

We describe a new method to combine propensity-score matching with regression adjustment in treatment-control studies when outcomes are binary by multiply imputing potential outcomes under control for the matched treated subjects. This enables the estimation of clinically meaningful measures of effect such as the risk difference. We used Monte Carlo simulation to explore the effect of the number of imputed potential outcomes under control for the matched treated subjects on inferences about the risk difference. We found that imputing potential outcomes under control (either single imputation or multiple imputation) resulted in a substantial reduction in bias compared with what was achieved using conventional nearest neighbor matching alone. Increasing the number of imputed potential outcomes under control resulted in more efficient estimation, with more efficient estimation of the estimated risk difference when increasing the number of the imputed potential outcomes. The greatest relative increase in efficiency was achieved by imputing five potential outcomes; once 20 outcomes under control were imputed for each matched treated subject, further improvements in efficiency were negligible. We also examined the effect of the number of these imputed potential outcomes on: (i) estimated standard errors; (ii) mean squared error; (iii) coverage of estimated confidence intervals. We illustrate the application of the method by estimating the effect on the risk of death within 1 year of prescribing beta-blockers to patients discharged from hospital with a diagnosis of heart failure.

摘要

我们描述了一种新方法,可在治疗-对照研究中将倾向评分匹配与回归调整相结合,当结果为二分类时,通过对匹配的治疗组个体的对照进行潜在结果的多次插补来实现。这使我们能够估计具有临床意义的效应量,如风险差。我们使用蒙特卡罗模拟来探讨匹配的治疗组个体的对照下潜在结果的插补数量对风险差推断的影响。我们发现,与仅使用传统最近邻匹配相比,对对照下的潜在结果进行插补(无论是单插补还是多插补)都会大大减少偏差。随着对照下潜在结果数量的增加,估计会更加有效,并且随着插补潜在结果数量的增加,对估计的风险差的估计也会更加有效。通过插补五个潜在结果可以实现最大的相对效率提高;一旦为每个匹配的治疗个体插补了 20 个对照下的结果,进一步提高效率的效果则微不足道。我们还研究了这些插补潜在结果的数量对以下方面的影响:(i)估计的标准误差;(ii)均方误差;(iii)估计置信区间的覆盖率。我们通过估计心力衰竭出院患者开处方β受体阻滞剂后 1 年内死亡风险的影响来说明该方法的应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/31bd/8596520/264e6be35326/SIM-40-5565-g006.jpg

相似文献

2
Covariate-adjusted survival analyses in propensity-score matched samples: Imputing potential time-to-event outcomes.
Stat Methods Med Res. 2020 Mar;29(3):728-751. doi: 10.1177/0962280218817926. Epub 2018 Dec 20.
4
Double propensity-score adjustment: A solution to design bias or bias due to incomplete matching.
Stat Methods Med Res. 2017 Feb;26(1):201-222. doi: 10.1177/0962280214543508. Epub 2016 Sep 30.
6
Optimal full matching for survival outcomes: a method that merits more widespread use.
Stat Med. 2015 Dec 30;34(30):3949-67. doi: 10.1002/sim.6602. Epub 2015 Aug 6.
7
Imputation strategies when a continuous outcome is to be dichotomized for responder analysis: a simulation study.
BMC Med Res Methodol. 2019 Jul 23;19(1):161. doi: 10.1186/s12874-019-0793-x.
8
Comparison of the ability of double-robust estimators to correct bias in propensity score matching analysis. A Monte Carlo simulation study.
Pharmacoepidemiol Drug Saf. 2017 Dec;26(12):1513-1519. doi: 10.1002/pds.4325. Epub 2017 Oct 6.
9
Variance estimation when using propensity-score matching with replacement with survival or time-to-event outcomes.
Stat Med. 2020 May 20;39(11):1623-1640. doi: 10.1002/sim.8502. Epub 2020 Feb 28.

本文引用的文献

1
Covariate-adjusted survival analyses in propensity-score matched samples: Imputing potential time-to-event outcomes.
Stat Methods Med Res. 2020 Mar;29(3):728-751. doi: 10.1177/0962280218817926. Epub 2018 Dec 20.
3
Double propensity-score adjustment: A solution to design bias or bias due to incomplete matching.
Stat Methods Med Res. 2017 Feb;26(1):201-222. doi: 10.1177/0962280214543508. Epub 2016 Sep 30.
4
A comparison of 12 algorithms for matching on the propensity score.
Stat Med. 2014 Mar 15;33(6):1057-69. doi: 10.1002/sim.6004. Epub 2013 Oct 7.
5
Robust estimation of causal effects of binary treatments in unconfounded studies with dichotomous outcomes.
Stat Med. 2013 May 20;32(11):1795-814. doi: 10.1002/sim.5627. Epub 2012 Sep 28.
7
An Introduction to Propensity Score Methods for Reducing the Effects of Confounding in Observational Studies.
Multivariate Behav Res. 2011 May;46(3):399-424. doi: 10.1080/00273171.2011.568786. Epub 2011 Jun 8.
9
Matching methods for causal inference: A review and a look forward.
Stat Sci. 2010 Feb 1;25(1):1-21. doi: 10.1214/09-STS313.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验