Physics of Interfaces and Nanomaterials, MESA+ Institute for Nanotechnology, University of Twente, PO Box 217, 7500AE Enschede, The Netherlands.
Beilstein J Nanotechnol. 2012;3:501-6. doi: 10.3762/bjnano.3.57. Epub 2012 Jul 10.
The unique surface sensitivity and the high resolution that can be achieved with helium ion microscopy make it a competitive technique for modern materials characterization. As in other techniques that make use of a charged particle beam, channeling through the crystal structure of the bulk of the material can occur.
Here, we demonstrate how this bulk phenomenon affects secondary electron images that predominantly contain surface information. In addition, we will show how it can be used to obtain crystallographic information. We will discuss the origin of channeling contrast in secondary electron images, illustrate this with experiments, and develop a simple geometric model to predict channeling maxima.
Channeling plays an important role in helium ion microscopy and has to be taken into account when trying to achieve maximum image quality in backscattered helium images as well as secondary electron images. Secondary electron images can be used to extract crystallographic information from bulk samples as well as from thin surface layers, in a straightforward manner.
氦离子显微镜具有独特的表面灵敏度和可实现的高分辨率,使其成为现代材料特性分析的一种极具竞争力的技术。与其他利用带电粒子束的技术一样,材料的体相结构中可能会发生沟道现象。
本文展示了这种体相现象如何影响主要包含表面信息的二次电子图像。此外,本文还将展示如何利用它来获取晶体学信息。我们将讨论二次电子图像中沟道对比度的起源,用实验来说明这一点,并开发一个简单的几何模型来预测沟道最大值。
沟道现象在氦离子显微镜中起着重要的作用,在试图获得背散射氦离子图像以及二次电子图像的最佳图像质量时,必须考虑到这一点。二次电子图像可用于从体相样品以及薄的表面层中以直接的方式提取晶体学信息。