Suppr超能文献

研究和完善蛋白质数据库(PDB)中的大分子。

Studying and polishing the PDB's macromolecules.

作者信息

Richardson Jane S, Richardson David C

机构信息

Department of Biochemistry, Duke University, Durham, North Carolina, USA.

出版信息

Biopolymers. 2013 Mar;99(3):170-82. doi: 10.1002/bip.22108. Epub 2012 Sep 29.

Abstract

Macromolecular crystal structures are among the best of scientific data, providing detailed insight into these complex and biologically important molecules with a relatively low level of error and subjectivity. However, there are two notable problems with getting the most information from them. The first is that the models are not perfect: there is still opportunity for improving them, and users need to evaluate whether the local reliability in a structure is up to answering their question of interest. The second is that protein and nucleic acid molecules are highly complex and individual, inherently handed and three-dimensional, and the cooperative and subtle interactions that govern their detailed structure and function are not intuitively evident. Thus there is a real need for graphical representations and descriptive classifications that enable molecular 3D literacy. We have spent our career working to understand these elegant molecules ourselves, and building tools to help us and others determine and understand them better. The Protein Data Bank (PDB) has of course been vital and central to this undertaking. Here we combine some history of our involvement as depositors, illustrators, evaluators, and end-users of PDB structures with commentary on how best to study and draw scientific inferences from them.

摘要

大分子晶体结构是最好的科学数据之一,能以相对较低的误差和主观性,深入洞察这些复杂且具有生物学重要性的分子。然而,要从这些结构中获取最多信息存在两个显著问题。第一个问题是模型并不完美:仍有改进的空间,用户需要评估结构中的局部可靠性是否足以回答他们感兴趣的问题。第二个问题是蛋白质和核酸分子高度复杂且独特,本质上具有手性和三维结构,支配其详细结构和功能的协同且微妙的相互作用并非直观可见。因此,确实需要图形表示和描述性分类来实现分子三维素养。我们一生都致力于亲自理解这些精妙的分子,并构建工具来帮助我们自己和他人更好地确定和理解它们。蛋白质数据库(PDB)在这项工作中当然至关重要且处于核心地位。在此,我们将我们作为PDB结构的存入者、阐释者、评估者和最终用户的一些参与历史,与关于如何最好地研究这些结构并从中得出科学推论的评论结合起来。

相似文献

1
Studying and polishing the PDB's macromolecules.研究和完善蛋白质数据库(PDB)中的大分子。
Biopolymers. 2013 Mar;99(3):170-82. doi: 10.1002/bip.22108. Epub 2012 Sep 29.
2
Validation of ligands in macromolecular structures determined by X-ray crystallography.用 X 射线晶体学确定的大分子结构中的配体验证。
Acta Crystallogr D Struct Biol. 2018 Mar 1;74(Pt 3):228-236. doi: 10.1107/S2059798318002541. Epub 2018 Mar 2.
7
Pharmacophore searching: A potential solution for correcting unknown ligands (UNK) labelling errors in Protein Data Bank (PDB'S).
J Mol Graph Model. 2017 Aug;75:94-101. doi: 10.1016/j.jmgm.2017.03.021. Epub 2017 Apr 4.
9
The distribution and query systems of the RCSB Protein Data Bank.RCSB蛋白质数据库的分布与查询系统。
Nucleic Acids Res. 2004 Jan 1;32(Database issue):D223-5. doi: 10.1093/nar/gkh096.
10
The Protein Data Bank Archive.蛋白质数据库档案。
Methods Mol Biol. 2021;2305:3-21. doi: 10.1007/978-1-0716-1406-8_1.

引用本文的文献

3
Seeing the PDB.看见 PDB。
J Biol Chem. 2021 Jan-Jun;296:100742. doi: 10.1016/j.jbc.2021.100742. Epub 2021 May 4.

本文引用的文献

4
Features and development of Coot.Coot的特点与发展
Acta Crystallogr D Biol Crystallogr. 2010 Apr;66(Pt 4):486-501. doi: 10.1107/S0907444910007493. Epub 2010 Mar 24.
5
PHENIX: a comprehensive Python-based system for macromolecular structure solution.PHENIX:一个基于Python的用于大分子结构解析的综合系统。
Acta Crystallogr D Biol Crystallogr. 2010 Feb;66(Pt 2):213-21. doi: 10.1107/S0907444909052925. Epub 2010 Jan 22.
6
MolProbity: all-atom structure validation for macromolecular crystallography.MolProbity:用于大分子晶体学的全原子结构验证
Acta Crystallogr D Biol Crystallogr. 2010 Jan;66(Pt 1):12-21. doi: 10.1107/S0907444909042073. Epub 2009 Dec 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验