Department of Statistics, Harvard University, Cambridge, MA 02138, USA.
Bioinformatics. 2012 Dec 1;28(23):3131-3. doi: 10.1093/bioinformatics/bts570. Epub 2012 Sep 27.
We propose a parametric model, HiCNorm, to remove systematic biases in the raw Hi-C contact maps, resulting in a simple, fast, yet accurate normalization procedure. Compared with the existing Hi-C normalization method developed by Yaffe and Tanay, HiCNorm has fewer parameters, runs >1000 times faster and achieves higher reproducibility.
Freely available on the web at: http://www.people.fas.harvard.edu/∼junliu/HiCNorm/.
Supplementary data are available at Bioinformatics online.
我们提出了一个参数模型 HiCNorm,用于去除原始 Hi-C 接触图谱中的系统偏差,从而得到一个简单、快速但准确的标准化程序。与 Yaffe 和 Tanay 开发的现有 Hi-C 标准化方法相比,HiCNorm 参数更少,运行速度快 1000 多倍,重现性更高。
可在以下网址免费获得:http://www.people.fas.harvard.edu/∼junliu/HiCNorm/。
补充数据可在 Bioinformatics 在线获得。