Suppr超能文献

RNA 聚合酶 II CTD 协调转录和 RNA 加工。

The RNA polymerase II CTD coordinates transcription and RNA processing.

机构信息

Department of Biological Sciences, Columbia University, New York, New York 10027, USA.

出版信息

Genes Dev. 2012 Oct 1;26(19):2119-37. doi: 10.1101/gad.200303.112.

Abstract

The C-terminal domain (CTD) of the RNA polymerase II largest subunit consists of multiple heptad repeats (consensus Tyr1-Ser2-Pro3-Thr4-Ser5-Pro6-Ser7), varying in number from 26 in yeast to 52 in vertebrates. The CTD functions to help couple transcription and processing of the nascent RNA and also plays roles in transcription elongation and termination. The CTD is subject to extensive post-translational modification, most notably phosphorylation, during the transcription cycle, which modulates its activities in the above processes. Therefore, understanding the nature of CTD modifications, including how they function and how they are regulated, is essential to understanding the mechanisms that control gene expression. While the significance of phosphorylation of Ser2 and Ser5 residues has been studied and appreciated for some time, several additional modifications have more recently been added to the CTD repertoire, and insight into their function has begun to emerge. Here, we review findings regarding modification and function of the CTD, highlighting the important role this unique domain plays in coordinating gene activity.

摘要

RNA 聚合酶 II 大亚基的 C 端结构域(CTD)由多个七肽重复序列(共识性 Tyr1-Ser2-Pro3-Thr4-Ser5-Pro6-Ser7)组成,其数量在酵母中变化范围为 26 个,在脊椎动物中变化范围为 52 个。CTD 有助于转录和新生 RNA 的加工偶联,也在转录延伸和终止中发挥作用。在转录周期中,CTD 会受到广泛的翻译后修饰,尤其是磷酸化修饰,这些修饰会调节其在上述过程中的活性。因此,了解 CTD 修饰的性质,包括它们的功能和调控方式,对于理解控制基因表达的机制至关重要。虽然 Ser2 和 Ser5 残基磷酸化的意义已经研究并得到了一定的认识,但最近又有几种额外的修饰被添加到 CTD 中,并且对它们的功能的认识也开始出现。在这里,我们回顾了 CTD 的修饰和功能的研究结果,强调了这个独特结构域在协调基因活性方面的重要作用。

相似文献

1
The RNA polymerase II CTD coordinates transcription and RNA processing.
Genes Dev. 2012 Oct 1;26(19):2119-37. doi: 10.1101/gad.200303.112.
2
The RNA polymerase II CTD "orphan" residues: Emerging insights into the functions of Tyr-1, Thr-4, and Ser-7.
Transcription. 2018;9(1):30-40. doi: 10.1080/21541264.2017.1338176. Epub 2017 Oct 4.
3
Dynamic phosphorylation patterns of RNA polymerase II CTD during transcription.
Biochim Biophys Acta. 2013 Jan;1829(1):55-62. doi: 10.1016/j.bbagrm.2012.08.013. Epub 2012 Sep 7.
4
Transcription by RNA polymerase II and the CTD-chromatin crosstalk.
Biochem Biophys Res Commun. 2022 Apr 9;599:81-86. doi: 10.1016/j.bbrc.2022.02.039. Epub 2022 Feb 11.
5
C-terminal repeat domain kinase I phosphorylates Ser2 and Ser5 of RNA polymerase II C-terminal domain repeats.
J Biol Chem. 2004 Jun 11;279(24):24957-64. doi: 10.1074/jbc.M402218200. Epub 2004 Mar 26.
6
Tyrosine-1 and threonine-4 phosphorylation marks complete the RNA polymerase II CTD phospho-code.
RNA Biol. 2012 Sep;9(9):1144-6. doi: 10.4161/rna.21726. Epub 2012 Sep 1.
7
A combinatorial view of old and new RNA polymerase II modifications.
Transcription. 2020 Apr;11(2):66-82. doi: 10.1080/21541264.2020.1762468. Epub 2020 May 13.
9
Vertebrate Ssu72 regulates and coordinates 3'-end formation of RNAs transcribed by RNA polymerase II.
PLoS One. 2014 Aug 28;9(8):e106040. doi: 10.1371/journal.pone.0106040. eCollection 2014.

引用本文的文献

2
RNA polymerase III transcription-associated polyadenylation promotes the accumulation of noncoding retrotransposons during infection.
Proc Natl Acad Sci U S A. 2025 Aug 12;122(32):e2507186122. doi: 10.1073/pnas.2507186122. Epub 2025 Aug 6.
3
U1-70K and U1A and tau pathogenesis in demented and non-demented individuals with Down syndrome.
Alzheimers Dement. 2025 Aug;21(8):e70474. doi: 10.1002/alz.70474.
7
Generation and characterization of a Cre-inducible ZNF768 overexpression mouse model.
Sci Rep. 2025 Jun 5;15(1):19792. doi: 10.1038/s41598-025-03110-8.
8
Domain acquisition enabled functional expansion of the TFIIS transcription factor family.
Cell Biosci. 2025 Jun 4;15(1):78. doi: 10.1186/s13578-025-01423-9.
9
peptidyl-prolyl isomerase-like 4 regulates circadian rhythm by supporting high-amplitude oscillations of PERIOD.
iScience. 2025 Apr 16;28(5):112457. doi: 10.1016/j.isci.2025.112457. eCollection 2025 May 16.
10
RNA polymerase II partitioning is a shared feature of diverse oncofusion condensates.
Cell. 2025 Jul 10;188(14):3843-3862.e28. doi: 10.1016/j.cell.2025.04.002. Epub 2025 Apr 25.

本文引用的文献

2
CTD tyrosine phosphorylation impairs termination factor recruitment to RNA polymerase II.
Science. 2012 Jun 29;336(6089):1723-5. doi: 10.1126/science.1219651.
3
The COMPASS family of histone H3K4 methylases: mechanisms of regulation in development and disease pathogenesis.
Annu Rev Biochem. 2012;81:65-95. doi: 10.1146/annurev-biochem-051710-134100.
4
Cryptic transcription and early termination in the control of gene expression.
Genet Res Int. 2011;2011:653494. doi: 10.4061/2011/653494. Epub 2011 Nov 24.
6
R loops: from transcription byproducts to threats to genome stability.
Mol Cell. 2012 Apr 27;46(2):115-24. doi: 10.1016/j.molcel.2012.04.009.
7
BRD4 is an atypical kinase that phosphorylates serine2 of the RNA polymerase II carboxy-terminal domain.
Proc Natl Acad Sci U S A. 2012 May 1;109(18):6927-32. doi: 10.1073/pnas.1120422109. Epub 2012 Apr 16.
9
The spt5 C-terminal region recruits yeast 3' RNA cleavage factor I.
Mol Cell Biol. 2012 Apr;32(7):1321-31. doi: 10.1128/MCB.06310-11. Epub 2012 Jan 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验