Suppr超能文献

系统发育估计误差会降低物种划分的准确性:广义混合 Yule 合并模型的贝叶斯实现。

Phylogenetic estimation error can decrease the accuracy of species delimitation: a Bayesian implementation of the general mixed Yule-coalescent model.

机构信息

Department of Biological Science, Louisiana State University, Baton Rouge, LA 70803, USA.

出版信息

BMC Evol Biol. 2012 Oct 2;12:196. doi: 10.1186/1471-2148-12-196.

Abstract

BACKGROUND

Species are considered the fundamental unit in many ecological and evolutionary analyses, yet accurate, complete, accessible taxonomic frameworks with which to identify them are often unavailable to researchers. In such cases DNA sequence-based species delimitation has been proposed as a means of estimating species boundaries for further analysis. Several methods have been proposed to accomplish this. Here we present a Bayesian implementation of an evolutionary model-based method, the general mixed Yule-coalescent model (GMYC). Our implementation integrates over the parameters of the model and uncertainty in phylogenetic relationships using the output of widely available phylogenetic models and Markov-Chain Monte Carlo (MCMC) simulation in order to produce marginal probabilities of species identities.

RESULTS

We conducted simulations testing the effects of species evolutionary history, levels of intraspecific sampling and number of nucleotides sequenced. We also re-analyze the dataset used to introduce the original GMYC model. We found that the model results are improved with addition of DNA sequence and increased sampling, although these improvements have limits. The most important factor in the success of the model is the underlying phylogenetic history of the species under consideration. Recent and rapid divergences result in higher amounts of uncertainty in the model and eventually cause the model to fail to accurately assess uncertainty in species limits.

CONCLUSION

Our results suggest that the GMYC model can be useful under a wide variety of circumstances, particularly in cases where divergences are deeper, or taxon sampling is incomplete, as in many studies of ecological communities, but that, in accordance with expectations from coalescent theory, rapid, recent radiations may yield inaccurate results. Our implementation differs from existing ones in two ways: it allows for the accounting for important sources of uncertainty in the model (phylogenetic and in parameters specific to the model) and in the specification of informative prior distributions that can increase the precision of the model. We have incorporated this model into a user-friendly R package available on the authors' websites.

摘要

背景

物种被认为是许多生态和进化分析的基本单位,但研究人员通常无法获得准确、完整、可访问的分类学框架来识别它们。在这种情况下,基于 DNA 序列的物种界定已被提议作为估计物种界限以进行进一步分析的一种方法。已经提出了几种方法来实现这一目标。在这里,我们提出了一种基于进化模型的方法,即广义混合 Yule 合并模型(GMYC)的贝叶斯实现。我们的实现通过广泛可用的系统发育模型的输出以及通过马尔可夫链蒙特卡罗(MCMC)模拟对系统发育关系的不确定性进行积分,从而对模型的参数和不确定性进行积分,以产生物种身份的边缘概率。

结果

我们进行了模拟测试,以检验物种进化历史、种内采样水平和测序核苷酸数量的影响。我们还重新分析了用于引入原始 GMYC 模型的数据集。我们发现,随着 DNA 序列和采样量的增加,模型的结果得到了改善,尽管这些改进是有限的。模型成功的最重要因素是所考虑物种的潜在系统发育历史。最近和快速的分歧会导致模型中的不确定性增加,并最终导致模型无法准确评估物种界限的不确定性。

结论

我们的结果表明,GMYC 模型在各种情况下都可能有用,特别是在分歧较深或分类群采样不完整的情况下,例如在许多生态群落研究中,但与合并理论的预期一致,快速、最近的辐射可能会产生不准确的结果。我们的实现与现有实现有两个不同之处:它允许考虑模型(系统发育和模型特有的参数)中的重要不确定性源,并指定可以提高模型精度的信息先验分布。我们已经将此模型集成到作者网站上提供的用户友好的 R 包中。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6196/3503838/bba41dcb533c/1471-2148-12-196-1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验