Suppr超能文献

疟原虫二氢叶酸还原酶作为针对耐药性受损靶标的药物开发的典范。

Malarial dihydrofolate reductase as a paradigm for drug development against a resistance-compromised target.

机构信息

BIOTEC, National Science and Technology Development Agency, Thailand Science Park, Pathumthani 12120, Thailand.

出版信息

Proc Natl Acad Sci U S A. 2012 Oct 16;109(42):16823-8. doi: 10.1073/pnas.1204556109. Epub 2012 Oct 3.

Abstract

Malarial dihydrofolate reductase (DHFR) is the target of antifolate antimalarial drugs such as pyrimethamine and cycloguanil, the clinical efficacy of which have been compromised by resistance arising through mutations at various sites on the enzyme. Here, we describe the use of cocrystal structures with inhibitors and substrates, along with efficacy and pharmacokinetic profiling for the design, characterization, and preclinical development of a selective, highly efficacious, and orally available antimalarial drug candidate that potently inhibits both wild-type and clinically relevant mutated forms of Plasmodium falciparum (Pf) DHFR. Important structural characteristics of P218 include pyrimidine side-chain flexibility and a carboxylate group that makes charge-mediated hydrogen bonds with conserved Arg122 (PfDHFR-TS amino acid numbering). An analogous interaction of P218 with human DHFR is disfavored because of three species-dependent amino acid substitutions in the vicinity of the conserved Arg. Thus, P218 binds to the active site of PfDHFR in a substantially different fashion from the human enzyme, which is the basis for its high selectivity. Unlike pyrimethamine, P218 binds both wild-type and mutant PfDHFR in a slow-on/slow-off tight-binding mode, which prolongs the target residence time. P218, when bound to PfDHFR-TS, resides almost entirely within the envelope mapped out by the dihydrofolate substrate, which may make it less susceptible to resistance mutations. The high in vivo efficacy in a SCID mouse model of P. falciparum malaria, good oral bioavailability, favorable enzyme selectivity, and good safety characteristics of P218 make it a potential candidate for further development.

摘要

疟原虫二氢叶酸还原酶(DHFR)是抗叶酸类抗疟药物的靶标,如氨苯砜和环胍氨,其临床疗效因酶的各种部位的突变而产生的耐药性而受到影响。在这里,我们描述了使用与抑制剂和底物的共晶结构,以及功效和药代动力学特征来设计、表征和临床前开发一种选择性、高效和口服有效的抗疟候选药物,该药物能够强烈抑制野生型和临床相关的突变形式的恶性疟原虫(Pf)DHFR。P218 的重要结构特征包括嘧啶侧链的灵活性和一个羧酸基团,它与保守的 Arg122(PfDHFR-TS 氨基酸编号)形成电荷介导的氢键。由于在保守 Arg 附近的三个种属依赖性氨基酸取代,P218 与人类 DHFR 的类似相互作用是不利的。因此,P218 以与人类酶截然不同的方式结合 PfDHFR 的活性位点,这是其高选择性的基础。与氨苯砜不同,P218 以慢结合/慢解离的紧密结合模式结合野生型和突变型 PfDHFR,从而延长了靶标停留时间。当与 PfDHFR-TS 结合时,P218 几乎完全位于二氢叶酸底物所描绘的包膜内,这可能使其不易发生耐药性突变。在恶性疟原虫 SCID 小鼠模型中的高体内疗效、良好的口服生物利用度、良好的酶选择性和良好的安全性特征使 P218 成为进一步开发的潜在候选药物。

相似文献

引用本文的文献

7
Combating antimicrobial resistance in malaria, HIV and tuberculosis.抗疟疾、艾滋病毒和结核病中的抗菌药物耐药性
Nat Rev Drug Discov. 2024 Jun;23(6):461-479. doi: 10.1038/s41573-024-00933-4. Epub 2024 May 15.

本文引用的文献

2
Molecular Basis for Drug Resistance in HIV-1 Protease.HIV-1 蛋白酶耐药性的分子基础。
Viruses. 2010 Nov;2(11):2509-2535. doi: 10.3390/v2112509. Epub 2010 Nov 12.
6
Artemisinin resistance--the clock is ticking.青蒿素耐药性——时间紧迫。
Lancet. 2010 Dec 18;376(9758):2051-2. doi: 10.1016/S0140-6736(10)61963-0.
8
Chemical genetics of Plasmodium falciparum.恶性疟原虫的化学遗传学
Nature. 2010 May 20;465(7296):311-5. doi: 10.1038/nature09099.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验