Suppr超能文献

使用基于图论的描述和匹配方法确定组织学图像的相似性,用于医学诊断中的基于内容的图像检索。

Determining similarity in histological images using graph-theoretic description and matching methods for content-based image retrieval in medical diagnostics.

机构信息

Electrical Engineering Department, IIT Roorkee, India.

出版信息

Diagn Pathol. 2012 Oct 4;7:134. doi: 10.1186/1746-1596-7-134.

Abstract

BACKGROUND

Computer-based analysis of digitalized histological images has been gaining increasing attention, due to their extensive use in research and routine practice. The article aims to contribute towards the description and retrieval of histological images by employing a structural method using graphs. Due to their expressive ability, graphs are considered as a powerful and versatile representation formalism and have obtained a growing consideration especially by the image processing and computer vision community.

METHODS

The article describes a novel method for determining similarity between histological images through graph-theoretic description and matching, for the purpose of content-based retrieval. A higher order (region-based) graph-based representation of breast biopsy images has been attained and a tree-search based inexact graph matching technique has been employed that facilitates the automatic retrieval of images structurally similar to a given image from large databases.

RESULTS

The results obtained and evaluation performed demonstrate the effectiveness and superiority of graph-based image retrieval over a common histogram-based technique. The employed graph matching complexity has been reduced compared to the state-of-the-art optimal inexact matching methods by applying a pre-requisite criterion for matching of nodes and a sophisticated design of the estimation function, especially the prognosis function.

CONCLUSION

The proposed method is suitable for the retrieval of similar histological images, as suggested by the experimental and evaluation results obtained in the study. It is intended for the use in Content Based Image Retrieval (CBIR)-requiring applications in the areas of medical diagnostics and research, and can also be generalized for retrieval of different types of complex images.

VIRTUAL SLIDES

The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/1224798882787923.

摘要

背景

由于在研究和常规实践中的广泛应用,基于计算机的数字化组织学图像分析越来越受到关注。本文旨在通过使用基于图的结构方法来促进组织学图像的描述和检索。由于其表达能力,图被认为是一种强大且多功能的表示形式,并且特别受到图像处理和计算机视觉社区的越来越多的关注。

方法

本文描述了一种通过图论描述和匹配确定组织学图像之间相似性的新方法,用于基于内容的检索。已经获得了基于高阶(基于区域)的图的乳腺活检图像表示,并采用了基于树搜索的不精确图匹配技术,该技术有助于从大型数据库中自动检索与给定图像结构相似的图像。

结果

所获得的结果和进行的评估表明,基于图的图像检索比常见的基于直方图的技术更有效和优越。通过应用节点匹配的前提条件标准和估计函数(特别是预后函数)的复杂设计,与最先进的最优不精确匹配方法相比,所采用的图匹配复杂度已经降低。

结论

该方法适用于检索相似的组织学图像,正如研究中获得的实验和评估结果所表明的。它旨在用于基于内容的图像检索(CBIR)需要在医学诊断和研究领域的应用,并且也可以推广用于检索不同类型的复杂图像。

虚拟幻灯片

本文的虚拟幻灯片可以在此处找到:http://www.diagnosticpathology.diagnomx.eu/vs/1224798882787923.

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6aa8/3554463/1f4032496411/1746-1596-7-134-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验