Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA 52242, USA.
J Physiol. 2012 Dec 15;590(24):6327-42. doi: 10.1113/jphysiol.2012.239954. Epub 2012 Oct 8.
Dysregulation of L-type Ca(2+) currents in sinoatrial nodal (SAN) cells causes cardiac arrhythmia. Both Ca(v)1.2 and Ca(v)1.3 channels mediate sinoatrial L-type currents. Whether these channels exhibit differences in modulation and localization, which could affect their contribution to pacemaking, is unknown. In this study, we characterized voltage-dependent facilitation (VDF) and subcellular localization of Ca(v)1.2 and Ca(v)1.3 channels in mouse SAN cells and determined how these properties of Ca(v)1.3 affect sinoatrial pacemaking in a mathematical model. Whole cell Ba(2+) currents were recorded from SAN cells from mice carrying a point mutation that renders Ca(v)1.2 channels relatively insensitive to dihydropyridine antagonists. The Ca(v)1.2-mediated current was isolated in the presence of nimodipine (1 μm), which was subtracted from the total current to yield the Ca(v)1.3 component. With strong depolarizations (+80 mV), Ca(v)1.2 underwent significantly stronger inactivation than Ca(v)1.3. VDF of Ca(v)1.3 was evident during recovery from inactivation at a time when Ca(v)1.2 remained inactivated. By immunofluorescence, Ca(v)1.3 colocalized with ryanodine receptors in sarcomeric structures while Ca(v)1.2 was largely restricted to the delimiting plasma membrane. Ca(v)1.3 VDF enhanced recovery of pacemaker activity after pauses and positively regulated pacemaking during slow heart rate in a numerical model of mouse SAN automaticity, including preferential coupling of Ca(v)1.3 to ryanodine receptor-mediated Ca(2+) release. We conclude that strong VDF and colocalization with ryanodine receptors in mouse SAN cells are unique properties that may underlie a specific role for Ca(v)1.3 in opposing abnormal slowing of heart rate.
L 型钙电流在窦房结(SAN)细胞中的失调会导致心律失常。Ca(v)1.2 和 Ca(v)1.3 通道介导窦房结 L 型钙电流。这些通道在调节和定位方面是否存在差异,从而影响它们对起搏的贡献,目前尚不清楚。在这项研究中,我们描述了 Ca(v)1.2 和 Ca(v)1.3 通道在小鼠 SAN 细胞中的电压依赖性易化(VDF)和亚细胞定位,并确定了 Ca(v)1.3 的这些特性如何影响数学模型中的窦房结起搏。通过记录携带点突变的小鼠 SAN 细胞的全细胞 Ba(2+)电流,该突变使 Ca(v)1.2 通道对二氢吡啶拮抗剂相对不敏感。在 1 μm 尼莫地平存在的情况下,分离出 Ca(v)1.2 介导的电流,从总电流中减去该电流,得到 Ca(v)1.3 分量。在强去极化(+80 mV)时,Ca(v)1.2 的失活比 Ca(v)1.3 更明显。在 Ca(v)1.2 仍处于失活状态时,Ca(v)1.3 在恢复失活期间出现明显的 VDF。通过免疫荧光,Ca(v)1.3 与肌节结构中的肌浆网钙释放通道(ryanodine receptor)共定位,而 Ca(v)1.2 主要局限于限定的质膜。在小鼠 SAN 自动性的数值模型中,Ca(v)1.3 的 VDF 增强了起搏活动恢复后的恢复能力,并在心率缓慢期间正向调节起搏,包括 Ca(v)1.3 与肌浆网钙释放通道(ryanodine receptor)介导的 Ca(2+)释放的优先偶联。我们得出结论,在小鼠 SAN 细胞中,强 VDF 和与肌浆网钙释放通道(ryanodine receptor)的共定位是独特的特性,可能是 Ca(v)1.3 在拮抗心率异常减慢方面的特定作用的基础。