Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo, Japan.
Cytoskeleton (Hoboken). 2012 Dec;69(12):1059-68. doi: 10.1002/cm.21075. Epub 2012 Oct 9.
The tpg1 mutant of Chlamydomonas lacks the tubulin polyglutamylase TTLL9 and is deficient in flagellar tubulin polyglutamylation. It exhibits slow swimming, whereas the double mutant with oda2 (a slow-swimming mutant that lacks outer-arm dynein) is completely nonmotile. Thus, tubulin polyglutamylation must be important for the functioning of inner-arm dynein(s). In this study, we show that the tpg1 mutation only slightly affects the motility of mutants that lack dynein "e," one of the seven species of major inner-arm dyneins, whereas it greatly reduces the motility of mutants lacking other inner-arm dynein species. This suggests that dynein e is the main target of motility regulation by tubulin polyglutamylation. Furthermore, the motility of various mutants in the background of the tpg1 mutation raises the possibility that tubulin polyglutamylation also affects the dynein regulatory complex, a dynein e-associated key regulator of flagellar motility, which possibly constitutes the interdoublet (nexin) link. Tubulin polyglutamylation thus may play a central role in the regulation of ciliary and flagellar motility. © 2012 Wiley Periodicals, Inc.
眼虫 tpg1 突变体缺乏微管多聚谷氨酸酶 TTLL9,鞭毛微管多聚谷氨酸化不足。它表现出缓慢的游动,而与 oda2 的双突变体(缺乏外臂动力蛋白的游动缓慢突变体)则完全不动。因此,微管多聚谷氨酸化对于内臂动力蛋白(s)的功能至关重要。在这项研究中,我们表明,tpg1 突变仅对缺乏动力蛋白“e”的突变体的运动产生轻微影响,动力蛋白“e”是七种主要内臂动力蛋白之一,而对缺乏其他内臂动力蛋白的突变体的运动则大大降低。这表明动力蛋白 e 是微管多聚谷氨酸化调节运动的主要靶标。此外,tpg1 突变背景下各种突变体的运动提出了这样一种可能性,即微管多聚谷氨酸化也可能影响动力蛋白调节复合物,这是一种与鞭毛运动相关的关键动力蛋白 e 调节剂,它可能构成双联体(连接蛋白)连接。因此,微管多聚谷氨酸化可能在纤毛和鞭毛运动的调节中发挥核心作用。©2012 威利父子公司