Suppr超能文献

微管多聚谷氨酸化通过调节动纤丝内臂动力蛋白的活性来调节轴突运动。

Tubulin polyglutamylation regulates axonemal motility by modulating activities of inner-arm dyneins.

机构信息

Department of Biological Science, Graduate School of Science, University of Tokyo, Tokyo 113-0033, Japan.

出版信息

Curr Biol. 2010 Mar 9;20(5):441-5. doi: 10.1016/j.cub.2009.12.058. Epub 2010 Feb 25.

Abstract

Tubulin polyglutamylation is a modification that adds multiple glutamates to the gamma-carboxyl group of a glutamate residue in the C-terminal tails of alpha- and beta-tubulin [1, 2]. This modification has been implicated in the regulation of axonal transport and ciliary motility. However, its molecular function in cilia remains unknown. Here, using a novel Chlamydomonas reinhardtii mutant (tpg1) that lacks a homolog of human TTLL9, a glutamic acid ligase enzyme [3], we found that the lack of a long polyglutamate side chain in alpha-tubulin moderately weakens flagellar motility without noticeably impairing the axonemal structure. Furthermore, the double mutant of tpg1 with oda2, a mutation that leads to loss of outer-arm dynein, completely lacks motility. More surprisingly, when treated with protease and ATP, the axoneme of this paralyzed double mutant displayed faster microtubule sliding than the motile oda2 axoneme. These and other results suggest that polyglutamylation directly regulates microtubule-dynein interaction mainly by modulating the function of inner-arm dyneins.

摘要

微管多聚谷氨酸化是一种在α-和β-微管 C 末端尾巴的谷氨酸残基的γ-羧基上加多个谷氨酸的修饰[1,2]。这种修饰被认为参与了轴突运输和纤毛运动的调节。然而,它在纤毛中的分子功能仍然未知。在这里,我们使用一种新型的莱茵衣藻突变体(tpg1),该突变体缺乏人类 TTLL9 的同源物,一种谷氨酸连接酶[3],发现缺乏长多聚谷氨酸侧链的α-微管会适度削弱鞭毛运动,但不会明显损害轴丝结构。此外,tpg1 与 oda2 的双突变体,导致外臂动力蛋白丧失,完全丧失了运动能力。更令人惊讶的是,当用蛋白酶和 ATP 处理时,这个瘫痪的双突变体的轴丝显示出比有活力的 oda2 轴丝更快的微管滑动。这些和其他结果表明,多聚谷氨酸化主要通过调节内臂动力蛋白的功能来直接调节微管-动力蛋白相互作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验