Kubo Tomohiro, Hirono Masafumi, Aikawa Takumi, Kamiya Ritsu, Witman George B
Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, MA 01655 Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo 113-0033, Japan.
Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo 113-0033, Japan.
Mol Biol Cell. 2015 Aug 1;26(15):2810-22. doi: 10.1091/mbc.E15-03-0182. Epub 2015 Jun 17.
Ciliary length control is an incompletely understood process essential for normal ciliary function. The flagella of Chlamydomonas mutants lacking multiple axonemal dyneins are shorter than normal; previously it was shown that this shortness can be suppressed by the mutation suppressor of shortness 1 (ssh1) via an unknown mechanism. To elucidate this mechanism, we carried out genetic analysis of ssh1 and found that it is a new allele of TPG2 (hereafter tpg2-3), which encodes FAP234 functioning in tubulin polyglutamylation in the axoneme. Similar to the polyglutamylation-deficient mutants tpg1 and tpg2-1, tpg2-3 axonemal tubulin has a greatly reduced level of long polyglutamate side chains. We found that tpg1 and tpg2-1 mutations also promote flagellar elongation in short-flagella mutants, consistent with a polyglutamylation-dependent mechanism of suppression. Double mutants of tpg1 or tpg2-1 and fla10-1, a temperature-sensitive mutant of intraflagellar transport, underwent slower flagellar shortening than fla10-1 at restrictive temperatures, indicating that the rate of tubulin disassembly is decreased in the polyglutamylation-deficient flagella. Moreover, α-tubulin incorporation into the flagellar tips in temporary dikaryons was retarded in polyglutamylation-deficient flagella. These results show that polyglutamylation deficiency stabilizes axonemal microtubules, decelerating axonemal disassembly at the flagellar tip and shifting the axonemal assembly/disassembly balance toward assembly.
纤毛长度控制是一个尚未完全了解的过程,对正常的纤毛功能至关重要。缺乏多种轴丝动力蛋白的衣藻突变体的鞭毛比正常的短;此前已表明,这种短小可以通过短小抑制因子1(ssh1)的突变来抑制,但其机制尚不清楚。为了阐明这一机制,我们对ssh1进行了遗传分析,发现它是TPG2的一个新等位基因(以下简称tpg2-3),该基因编码在轴丝微管蛋白多聚谷氨酰胺化中起作用的FAP234。与多聚谷氨酰胺化缺陷突变体tpg1和tpg2-1类似,tpg2-3轴丝微管蛋白的长多聚谷氨酸侧链水平大大降低。我们发现tpg1和tpg2-1突变也能促进短鞭毛突变体的鞭毛伸长,这与多聚谷氨酰胺化依赖的抑制机制一致。tpg1或tpg2-1与鞭毛内运输的温度敏感突变体fla10-1的双突变体在限制温度下比fla10-1经历了更慢的鞭毛缩短,这表明在多聚谷氨酰胺化缺陷的鞭毛中微管蛋白的拆卸速率降低。此外,在多聚谷氨酰胺化缺陷的鞭毛中,α-微管蛋白掺入临时双核体鞭毛尖端的过程受到阻碍。这些结果表明,多聚谷氨酰胺化缺陷使轴丝微管稳定,减缓了鞭毛尖端的轴丝拆卸,并使轴丝组装/拆卸平衡向组装方向移动。