Suppr超能文献

微管蛋白多聚谷氨酰胺化的减少抑制了衣藻中鞭毛的变短。

Reduced tubulin polyglutamylation suppresses flagellar shortness in Chlamydomonas.

作者信息

Kubo Tomohiro, Hirono Masafumi, Aikawa Takumi, Kamiya Ritsu, Witman George B

机构信息

Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, MA 01655 Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo 113-0033, Japan.

Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo 113-0033, Japan.

出版信息

Mol Biol Cell. 2015 Aug 1;26(15):2810-22. doi: 10.1091/mbc.E15-03-0182. Epub 2015 Jun 17.

Abstract

Ciliary length control is an incompletely understood process essential for normal ciliary function. The flagella of Chlamydomonas mutants lacking multiple axonemal dyneins are shorter than normal; previously it was shown that this shortness can be suppressed by the mutation suppressor of shortness 1 (ssh1) via an unknown mechanism. To elucidate this mechanism, we carried out genetic analysis of ssh1 and found that it is a new allele of TPG2 (hereafter tpg2-3), which encodes FAP234 functioning in tubulin polyglutamylation in the axoneme. Similar to the polyglutamylation-deficient mutants tpg1 and tpg2-1, tpg2-3 axonemal tubulin has a greatly reduced level of long polyglutamate side chains. We found that tpg1 and tpg2-1 mutations also promote flagellar elongation in short-flagella mutants, consistent with a polyglutamylation-dependent mechanism of suppression. Double mutants of tpg1 or tpg2-1 and fla10-1, a temperature-sensitive mutant of intraflagellar transport, underwent slower flagellar shortening than fla10-1 at restrictive temperatures, indicating that the rate of tubulin disassembly is decreased in the polyglutamylation-deficient flagella. Moreover, α-tubulin incorporation into the flagellar tips in temporary dikaryons was retarded in polyglutamylation-deficient flagella. These results show that polyglutamylation deficiency stabilizes axonemal microtubules, decelerating axonemal disassembly at the flagellar tip and shifting the axonemal assembly/disassembly balance toward assembly.

摘要

纤毛长度控制是一个尚未完全了解的过程,对正常的纤毛功能至关重要。缺乏多种轴丝动力蛋白的衣藻突变体的鞭毛比正常的短;此前已表明,这种短小可以通过短小抑制因子1(ssh1)的突变来抑制,但其机制尚不清楚。为了阐明这一机制,我们对ssh1进行了遗传分析,发现它是TPG2的一个新等位基因(以下简称tpg2-3),该基因编码在轴丝微管蛋白多聚谷氨酰胺化中起作用的FAP234。与多聚谷氨酰胺化缺陷突变体tpg1和tpg2-1类似,tpg2-3轴丝微管蛋白的长多聚谷氨酸侧链水平大大降低。我们发现tpg1和tpg2-1突变也能促进短鞭毛突变体的鞭毛伸长,这与多聚谷氨酰胺化依赖的抑制机制一致。tpg1或tpg2-1与鞭毛内运输的温度敏感突变体fla10-1的双突变体在限制温度下比fla10-1经历了更慢的鞭毛缩短,这表明在多聚谷氨酰胺化缺陷的鞭毛中微管蛋白的拆卸速率降低。此外,在多聚谷氨酰胺化缺陷的鞭毛中,α-微管蛋白掺入临时双核体鞭毛尖端的过程受到阻碍。这些结果表明,多聚谷氨酰胺化缺陷使轴丝微管稳定,减缓了鞭毛尖端的轴丝拆卸,并使轴丝组装/拆卸平衡向组装方向移动。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5106/4571340/f864ae9b435d/2810fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验