Cognitive and Information Sciences, School of Social Sciences, Humanities, and Arts, University of California, Merced, Merced, CA 95343, USA.
Behav Res Methods. 2013 Jun;45(2):329-43. doi: 10.3758/s13428-012-0249-2.
The study of interpersonal synchrony examines how interacting individuals grow to have similar behavior, cognition, and emotion in time. Many of the established methods of analyzing interpersonal synchrony are costly and time-consuming; the study of bodily synchrony has been especially laborious, traditionally requiring researchers to hand-code movement frame by frame. Because of this, researchers have been searching for more efficient alternatives for decades. Recently, some researchers (e.g., Nagaoka & Komori (IEICE Transactions on Information and Systems, 91(6), 1634-1640, 2008); Ramseyer & Tschacher, 2008) have applied computer science and computer vision techniques to create frame-differencing methods (FDMs) to simplify analyses. In this article, we provide a detailed presentation of one such FDM, created by modifying and adding to existing FDMs. The FDM that we present requires little programming experience or specialized equipment: Only a few lines of MATLAB code are required to execute an automated analysis of interpersonal synchrony. We provide sample code and demonstrate its use with an analysis of brief, friendly conversations; using linear mixed-effects models, the measure of interpersonal synchrony was found to be significantly predicted by time lag (p < .001) and by the interaction between time lag and measures of interpersonal liking (p < .001). This pattern of results fits with existing literature on synchrony. We discuss the current limitations and future directions for FDMs, including their use as part of a larger methodology for capturing and analyzing multimodal interaction.
人际同步研究考察了相互作用的个体如何随着时间的推移在行为、认知和情感方面变得相似。许多现有的人际同步分析方法都很昂贵且耗时;身体同步的研究尤其费力,传统上需要研究人员手动逐帧编码运动。正因为如此,研究人员几十年来一直在寻找更有效的替代方法。最近,一些研究人员(例如,Nagaoka 和 Komori(IEICE Transactions on Information and Systems,91(6),1634-1640,2008);Ramseyer 和 Tschacher,2008)已经将计算机科学和计算机视觉技术应用于创建帧差方法(FDM)来简化分析。在本文中,我们详细介绍了一种 FDM,该方法通过修改和添加现有的 FDM 来创建。我们提出的 FDM 只需要很少的编程经验或专用设备:只需几行 MATLAB 代码即可执行人际同步的自动分析。我们提供了示例代码,并通过对简短、友好对话的分析演示了其使用方法;使用线性混合效应模型,人际同步的度量值显著受时间滞后(p <.001)和时间滞后与人际喜欢度量值之间的交互作用(p <.001)的影响。这种结果模式与关于同步的现有文献一致。我们讨论了 FDM 的当前限制和未来方向,包括它们作为捕获和分析多模态交互的更大方法的一部分的使用。