Suppr超能文献

多变量同步分析 Python 包(multiSyncPy):用于评估多变量协调动力学。

multiSyncPy: A Python package for assessing multivariate coordination dynamics.

机构信息

Semantic Information Systems Group, Institute of Computer Science, Osnabrück University, P.O. Box 4469, 49069, Osnabrueck, Germany.

Department of Cognitive Science and Artificial Intelligence, Tilburg University, Tilburg, The Netherlands.

出版信息

Behav Res Methods. 2023 Feb;55(2):932-962. doi: 10.3758/s13428-022-01855-y.

Abstract

In order to support the burgeoning field of research into intra- and interpersonal synchrony, we present an open-source software package: multiSyncPy. Multivariate synchrony goes beyond the bivariate case and can be useful for quantifying how groups, teams, and families coordinate their behaviors, or estimating the degree to which multiple modalities from an individual become synchronized. Our package includes state-of-the-art multivariate methods including symbolic entropy, multidimensional recurrence quantification analysis, coherence (with an additional sum-normalized modification), the cluster-phase 'Rho' metric, and a statistical test based on the Kuramoto order parameter. We also include functions for two surrogation techniques to compare the observed coordination dynamics with chance levels and a windowing function to examine time-varying coordination for most of the measures. Taken together, our collation and presentation of these methods make the study of interpersonal synchronization and coordination dynamics applicable to larger, more complex and often more ecologically valid study designs. In this work, we summarize the relevant theoretical background and present illustrative practical examples, lessons learned, as well as guidance for the usage of our package - using synthetic as well as empirical data. Furthermore, we provide a discussion of our work and software and outline interesting further directions and perspectives. multiSyncPy is freely available under the LGPL license at: https://github.com/cslab-hub/multiSyncPy , and also available at the Python package index.

摘要

为了支持内-人际同步性研究领域的蓬勃发展,我们提出了一个开源软件包:multiSyncPy。多元同步超越了二元情况,可用于量化群体、团队和家庭如何协调他们的行为,或估计个体的多个模式变得同步的程度。我们的软件包包括最新的多元方法,包括符号熵、多维递归定量分析、相干性(带有额外的总和归一化修改)、簇相位 'Rho' 度量,以及基于 Kuramoto 序参数的统计检验。我们还包括两个替代技术的函数,用于将观察到的协调动态与随机水平进行比较,以及一个窗口函数,用于检查大多数措施的时变协调。总的来说,我们对这些方法的整理和呈现使人际同步和协调动态的研究适用于更大、更复杂且通常更具生态有效性的研究设计。在这项工作中,我们总结了相关的理论背景,并提出了说明性的实际示例、经验教训,以及对我们软件包使用的指导——使用合成数据和经验数据。此外,我们还讨论了我们的工作和软件,并概述了有趣的进一步方向和观点。multiSyncPy 可在 LGPL 许可证下免费获得:https://github.com/cslab-hub/multiSyncPy ,也可在 Python 包索引中获得。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bcd0/10027834/8d6a75d6b07c/13428_2022_1855_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验